1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303 |
- // Copyright 2020 Joshua J Baker. All rights reserved.
- // Use of this source code is governed by an MIT-style
- // license that can be found in the LICENSE file.
- package btree
- import (
- "sync"
- "sync/atomic"
- )
- const (
- degree = 128
- maxItems = degree*2 - 1 // max items per node. max children is +1
- minItems = maxItems / 2
- )
- type BTreeG[T any] struct {
- mu *sync.RWMutex
- cow uint64
- root *node[T]
- count int
- locks bool
- less func(a, b T) bool
- empty T
- }
- type node[T any] struct {
- cow uint64
- count int
- items []T
- children *[]*node[T]
- }
- var gcow uint64
- // PathHint is a utility type used with the *Hint() functions. Hints provide
- // faster operations for clustered keys.
- type PathHint struct {
- used [8]bool
- path [8]uint8
- }
- // Options for passing to New when creating a new BTree.
- type Options struct {
- NoLocks bool
- }
- // New returns a new BTree
- func NewBTreeG[T any](less func(a, b T) bool) *BTreeG[T] {
- return NewBTreeGOptions(less, Options{})
- }
- func NewBTreeGOptions[T any](less func(a, b T) bool, opts Options) *BTreeG[T] {
- tr := new(BTreeG[T])
- tr.cow = atomic.AddUint64(&gcow, 1)
- tr.mu = new(sync.RWMutex)
- tr.less = less
- tr.locks = !opts.NoLocks
- return tr
- }
- // Less is a convenience function that performs a comparison of two items
- // using the same "less" function provided to New.
- func (tr *BTreeG[T]) Less(a, b T) bool {
- return tr.less(a, b)
- }
- func (tr *BTreeG[T]) newNode(leaf bool) *node[T] {
- n := &node[T]{cow: tr.cow}
- if !leaf {
- n.children = new([]*node[T])
- }
- return n
- }
- // leaf returns true if the node is a leaf.
- func (n *node[T]) leaf() bool {
- return n.children == nil
- }
- func (tr *BTreeG[T]) bsearch(n *node[T], key T) (index int, found bool) {
- low, high := 0, len(n.items)
- for low < high {
- h := int(uint(low+high) >> 1)
- if !tr.less(key, n.items[h]) {
- low = h + 1
- } else {
- high = h
- }
- }
- if low > 0 && !tr.less(n.items[low-1], key) {
- return low - 1, true
- }
- return low, false
- }
- func (tr *BTreeG[T]) find(n *node[T], key T, hint *PathHint, depth int,
- ) (index int, found bool) {
- if hint == nil {
- return tr.bsearch(n, key)
- }
- return tr.hintsearch(n, key, hint, depth)
- }
- func (tr *BTreeG[T]) hintsearch(n *node[T], key T, hint *PathHint, depth int,
- ) (index int, found bool) {
- // Best case finds the exact match, updates the hint and returns.
- // Worst case, updates the low and high bounds to binary search between.
- low := 0
- high := len(n.items) - 1
- if depth < 8 && hint.used[depth] {
- index = int(hint.path[depth])
- if index >= len(n.items) {
- // tail item
- if tr.Less(n.items[len(n.items)-1], key) {
- index = len(n.items)
- goto path_match
- }
- index = len(n.items) - 1
- }
- if tr.Less(key, n.items[index]) {
- if index == 0 || tr.Less(n.items[index-1], key) {
- goto path_match
- }
- high = index - 1
- } else if tr.Less(n.items[index], key) {
- low = index + 1
- } else {
- found = true
- goto path_match
- }
- }
- // Do a binary search between low and high
- // keep on going until low > high, where the guarantee on low is that
- // key >= items[low - 1]
- for low <= high {
- mid := low + ((high+1)-low)/2
- // if key >= n.items[mid], low = mid + 1
- // which implies that key >= everything below low
- if !tr.Less(key, n.items[mid]) {
- low = mid + 1
- } else {
- high = mid - 1
- }
- }
- // if low > 0, n.items[low - 1] >= key,
- // we have from before that key >= n.items[low - 1]
- // therefore key = n.items[low - 1],
- // and we have found the entry for key.
- // Otherwise we must keep searching for the key in index `low`.
- if low > 0 && !tr.Less(n.items[low-1], key) {
- index = low - 1
- found = true
- } else {
- index = low
- found = false
- }
- path_match:
- if depth < 8 {
- hint.used[depth] = true
- var pathIndex uint8
- if n.leaf() && found {
- pathIndex = uint8(index + 1)
- } else {
- pathIndex = uint8(index)
- }
- if pathIndex != hint.path[depth] {
- hint.path[depth] = pathIndex
- for i := depth + 1; i < 8; i++ {
- hint.used[i] = false
- }
- }
- }
- return index, found
- }
- // SetHint sets or replace a value for a key using a path hint
- func (tr *BTreeG[T]) SetHint(item T, hint *PathHint) (prev T, replaced bool) {
- if tr.locks {
- tr.mu.Lock()
- prev, replaced = tr.setHint(item, hint)
- tr.mu.Unlock()
- } else {
- prev, replaced = tr.setHint(item, hint)
- }
- return prev, replaced
- }
- func (tr *BTreeG[T]) setHint(item T, hint *PathHint) (prev T, replaced bool) {
- if tr.root == nil {
- tr.root = tr.newNode(true)
- tr.root.items = append([]T{}, item)
- tr.root.count = 1
- tr.count = 1
- return tr.empty, false
- }
- prev, replaced, split := tr.nodeSet(&tr.root, item, hint, 0)
- if split {
- left := tr.cowLoad(&tr.root)
- right, median := tr.nodeSplit(left)
- tr.root = tr.newNode(false)
- *tr.root.children = make([]*node[T], 0, maxItems+1)
- *tr.root.children = append([]*node[T]{}, left, right)
- tr.root.items = append([]T{}, median)
- tr.root.updateCount()
- return tr.setHint(item, hint)
- }
- if replaced {
- return prev, true
- }
- tr.count++
- return tr.empty, false
- }
- // Set or replace a value for a key
- func (tr *BTreeG[T]) Set(item T) (T, bool) {
- return tr.SetHint(item, nil)
- }
- func (tr *BTreeG[T]) nodeSplit(n *node[T]) (right *node[T], median T) {
- i := maxItems / 2
- median = n.items[i]
- const sliceItems = true
- // right node
- right = tr.newNode(n.leaf())
- if sliceItems {
- right.items = n.items[i+1:]
- if !n.leaf() {
- *right.children = (*n.children)[i+1:]
- }
- } else {
- right.items = make([]T, len(n.items[i+1:]), maxItems/2)
- copy(right.items, n.items[i+1:])
- if !n.leaf() {
- *right.children =
- make([]*node[T], len((*n.children)[i+1:]), maxItems+1)
- copy(*right.children, (*n.children)[i+1:])
- }
- }
- right.updateCount()
- // left node
- if sliceItems {
- n.items[i] = tr.empty
- n.items = n.items[:i:i]
- if !n.leaf() {
- *n.children = (*n.children)[: i+1 : i+1]
- }
- } else {
- for j := i; j < len(n.items); j++ {
- n.items[j] = tr.empty
- }
- if !n.leaf() {
- for j := i + 1; j < len((*n.children)); j++ {
- (*n.children)[j] = nil
- }
- }
- n.items = n.items[:i]
- if !n.leaf() {
- *n.children = (*n.children)[:i+1]
- }
- }
- n.updateCount()
- return right, median
- }
- func (n *node[T]) updateCount() {
- n.count = len(n.items)
- if !n.leaf() {
- for i := 0; i < len(*n.children); i++ {
- n.count += (*n.children)[i].count
- }
- }
- }
- // This operation should not be inlined because it's expensive and rarely
- // called outside of heavy copy-on-write situations. Marking it "noinline"
- // allows for the parent cowLoad to be inlined.
- // go:noinline
- func (tr *BTreeG[T]) copy(n *node[T]) *node[T] {
- n2 := new(node[T])
- n2.cow = tr.cow
- n2.count = n.count
- n2.items = make([]T, len(n.items), cap(n.items))
- copy(n2.items, n.items)
- if !n.leaf() {
- n2.children = new([]*node[T])
- *n2.children = make([]*node[T], len(*n.children), maxItems+1)
- copy(*n2.children, *n.children)
- }
- return n2
- }
- // cowLoad loads the provided node and, if needed, performs a copy-on-write.
- func (tr *BTreeG[T]) cowLoad(cn **node[T]) *node[T] {
- if (*cn).cow != tr.cow {
- *cn = tr.copy(*cn)
- }
- return *cn
- }
- func (tr *BTreeG[T]) nodeSet(cn **node[T], item T,
- hint *PathHint, depth int,
- ) (prev T, replaced bool, split bool) {
- if (*cn).cow != tr.cow {
- *cn = tr.copy(*cn)
- }
- n := *cn
- var i int
- var found bool
- if hint == nil {
- i, found = tr.bsearch(n, item)
- } else {
- i, found = tr.hintsearch(n, item, hint, depth)
- }
- if found {
- prev = n.items[i]
- n.items[i] = item
- return prev, true, false
- }
- if n.leaf() {
- if len(n.items) == maxItems {
- return tr.empty, false, true
- }
- n.items = append(n.items, tr.empty)
- copy(n.items[i+1:], n.items[i:])
- n.items[i] = item
- n.count++
- return tr.empty, false, false
- }
- prev, replaced, split = tr.nodeSet(&(*n.children)[i], item, hint, depth+1)
- if split {
- if len(n.items) == maxItems {
- return tr.empty, false, true
- }
- right, median := tr.nodeSplit((*n.children)[i])
- *n.children = append(*n.children, nil)
- copy((*n.children)[i+1:], (*n.children)[i:])
- (*n.children)[i+1] = right
- n.items = append(n.items, tr.empty)
- copy(n.items[i+1:], n.items[i:])
- n.items[i] = median
- return tr.nodeSet(&n, item, hint, depth)
- }
- if !replaced {
- n.count++
- }
- return prev, replaced, false
- }
- func (tr *BTreeG[T]) Scan(iter func(item T) bool) {
- if tr.rlock() {
- defer tr.runlock()
- }
- if tr.root == nil {
- return
- }
- tr.root.scan(iter)
- }
- func (n *node[T]) scan(iter func(item T) bool) bool {
- if n.leaf() {
- for i := 0; i < len(n.items); i++ {
- if !iter(n.items[i]) {
- return false
- }
- }
- return true
- }
- for i := 0; i < len(n.items); i++ {
- if !(*n.children)[i].scan(iter) {
- return false
- }
- if !iter(n.items[i]) {
- return false
- }
- }
- return (*n.children)[len(*n.children)-1].scan(iter)
- }
- // Get a value for key
- func (tr *BTreeG[T]) Get(key T) (T, bool) {
- if tr.locks {
- return tr.GetHint(key, nil)
- }
- if tr.root == nil {
- return tr.empty, false
- }
- n := tr.root
- for {
- i, found := tr.bsearch(n, key)
- if found {
- return n.items[i], true
- }
- if n.children == nil {
- return tr.empty, false
- }
- n = (*n.children)[i]
- }
- }
- // GetHint gets a value for key using a path hint
- func (tr *BTreeG[T]) GetHint(key T, hint *PathHint) (value T, ok bool) {
- if tr.rlock() {
- defer tr.runlock()
- }
- return tr.getHint(key, hint)
- }
- // GetHint gets a value for key using a path hint
- func (tr *BTreeG[T]) getHint(key T, hint *PathHint) (T, bool) {
- if tr.root == nil {
- return tr.empty, false
- }
- n := tr.root
- depth := 0
- for {
- i, found := tr.find(n, key, hint, depth)
- if found {
- return n.items[i], true
- }
- if n.children == nil {
- return tr.empty, false
- }
- n = (*n.children)[i]
- depth++
- }
- }
- // Len returns the number of items in the tree
- func (tr *BTreeG[T]) Len() int {
- return tr.count
- }
- // Delete a value for a key and returns the deleted value.
- // Returns false if there was no value by that key found.
- func (tr *BTreeG[T]) Delete(key T) (T, bool) {
- return tr.DeleteHint(key, nil)
- }
- // DeleteHint deletes a value for a key using a path hint and returns the
- // deleted value.
- // Returns false if there was no value by that key found.
- func (tr *BTreeG[T]) DeleteHint(key T, hint *PathHint) (T, bool) {
- if tr.lock() {
- defer tr.unlock()
- }
- return tr.deleteHint(key, hint)
- }
- func (tr *BTreeG[T]) deleteHint(key T, hint *PathHint) (T, bool) {
- if tr.root == nil {
- return tr.empty, false
- }
- prev, deleted := tr.delete(&tr.root, false, key, hint, 0)
- if !deleted {
- return tr.empty, false
- }
- if len(tr.root.items) == 0 && !tr.root.leaf() {
- tr.root = (*tr.root.children)[0]
- }
- tr.count--
- if tr.count == 0 {
- tr.root = nil
- }
- return prev, true
- }
- func (tr *BTreeG[T]) delete(cn **node[T], max bool, key T,
- hint *PathHint, depth int,
- ) (T, bool) {
- n := tr.cowLoad(cn)
- var i int
- var found bool
- if max {
- i, found = len(n.items)-1, true
- } else {
- i, found = tr.find(n, key, hint, depth)
- }
- if n.leaf() {
- if found {
- // found the items at the leaf, remove it and return.
- prev := n.items[i]
- copy(n.items[i:], n.items[i+1:])
- n.items[len(n.items)-1] = tr.empty
- n.items = n.items[:len(n.items)-1]
- n.count--
- return prev, true
- }
- return tr.empty, false
- }
- var prev T
- var deleted bool
- if found {
- if max {
- i++
- prev, deleted = tr.delete(&(*n.children)[i], true, tr.empty, nil, 0)
- } else {
- prev = n.items[i]
- maxItem, _ := tr.delete(&(*n.children)[i], true, tr.empty, nil, 0)
- deleted = true
- n.items[i] = maxItem
- }
- } else {
- prev, deleted = tr.delete(&(*n.children)[i], max, key, hint, depth+1)
- }
- if !deleted {
- return tr.empty, false
- }
- n.count--
- if len((*n.children)[i].items) < minItems {
- tr.nodeRebalance(n, i)
- }
- return prev, true
- }
- // nodeRebalance rebalances the child nodes following a delete operation.
- // Provide the index of the child node with the number of items that fell
- // below minItems.
- func (tr *BTreeG[T]) nodeRebalance(n *node[T], i int) {
- if i == len(n.items) {
- i--
- }
- // ensure copy-on-write
- left := tr.cowLoad(&(*n.children)[i])
- right := tr.cowLoad(&(*n.children)[i+1])
- if len(left.items)+len(right.items) < maxItems {
- // Merges the left and right children nodes together as a single node
- // that includes (left,item,right), and places the contents into the
- // existing left node. Delete the right node altogether and move the
- // following items and child nodes to the left by one slot.
- // merge (left,item,right)
- left.items = append(left.items, n.items[i])
- left.items = append(left.items, right.items...)
- if !left.leaf() {
- *left.children = append(*left.children, *right.children...)
- }
- left.count += right.count + 1
- // move the items over one slot
- copy(n.items[i:], n.items[i+1:])
- n.items[len(n.items)-1] = tr.empty
- n.items = n.items[:len(n.items)-1]
- // move the children over one slot
- copy((*n.children)[i+1:], (*n.children)[i+2:])
- (*n.children)[len(*n.children)-1] = nil
- (*n.children) = (*n.children)[:len(*n.children)-1]
- } else if len(left.items) > len(right.items) {
- // move left -> right over one slot
- // Move the item of the parent node at index into the right-node first
- // slot, and move the left-node last item into the previously moved
- // parent item slot.
- right.items = append(right.items, tr.empty)
- copy(right.items[1:], right.items)
- right.items[0] = n.items[i]
- right.count++
- n.items[i] = left.items[len(left.items)-1]
- left.items[len(left.items)-1] = tr.empty
- left.items = left.items[:len(left.items)-1]
- left.count--
- if !left.leaf() {
- // move the left-node last child into the right-node first slot
- *right.children = append(*right.children, nil)
- copy((*right.children)[1:], *right.children)
- (*right.children)[0] = (*left.children)[len(*left.children)-1]
- (*left.children)[len(*left.children)-1] = nil
- (*left.children) = (*left.children)[:len(*left.children)-1]
- left.count -= (*right.children)[0].count
- right.count += (*right.children)[0].count
- }
- } else {
- // move left <- right over one slot
- // Same as above but the other direction
- left.items = append(left.items, n.items[i])
- left.count++
- n.items[i] = right.items[0]
- copy(right.items, right.items[1:])
- right.items[len(right.items)-1] = tr.empty
- right.items = right.items[:len(right.items)-1]
- right.count--
- if !left.leaf() {
- *left.children = append(*left.children, (*right.children)[0])
- copy(*right.children, (*right.children)[1:])
- (*right.children)[len(*right.children)-1] = nil
- *right.children = (*right.children)[:len(*right.children)-1]
- left.count += (*left.children)[len(*left.children)-1].count
- right.count -= (*left.children)[len(*left.children)-1].count
- }
- }
- }
- // Ascend the tree within the range [pivot, last]
- // Pass nil for pivot to scan all item in ascending order
- // Return false to stop iterating
- func (tr *BTreeG[T]) Ascend(pivot T, iter func(item T) bool) {
- if tr.rlock() {
- defer tr.runlock()
- }
- if tr.root == nil {
- return
- }
- tr.ascend(tr.root, pivot, nil, 0, iter)
- }
- // The return value of this function determines whether we should keep iterating
- // upon this functions return.
- func (tr *BTreeG[T]) ascend(n *node[T], pivot T,
- hint *PathHint, depth int, iter func(item T) bool,
- ) bool {
- i, found := tr.find(n, pivot, hint, depth)
- if !found {
- if !n.leaf() {
- if !tr.ascend((*n.children)[i], pivot, hint, depth+1, iter) {
- return false
- }
- }
- }
- // We are either in the case that
- // - node is found, we should iterate through it starting at `i`,
- // the index it was located at.
- // - node is not found, and TODO: fill in.
- for ; i < len(n.items); i++ {
- if !iter(n.items[i]) {
- return false
- }
- if !n.leaf() {
- if !(*n.children)[i+1].scan(iter) {
- return false
- }
- }
- }
- return true
- }
- func (tr *BTreeG[T]) Reverse(iter func(item T) bool) {
- if tr.rlock() {
- defer tr.runlock()
- }
- if tr.root == nil {
- return
- }
- tr.root.reverse(iter)
- }
- func (n *node[T]) reverse(iter func(item T) bool) bool {
- if n.leaf() {
- for i := len(n.items) - 1; i >= 0; i-- {
- if !iter(n.items[i]) {
- return false
- }
- }
- return true
- }
- if !(*n.children)[len(*n.children)-1].reverse(iter) {
- return false
- }
- for i := len(n.items) - 1; i >= 0; i-- {
- if !iter(n.items[i]) {
- return false
- }
- if !(*n.children)[i].reverse(iter) {
- return false
- }
- }
- return true
- }
- // Descend the tree within the range [pivot, first]
- // Pass nil for pivot to scan all item in descending order
- // Return false to stop iterating
- func (tr *BTreeG[T]) Descend(pivot T, iter func(item T) bool) {
- if tr.rlock() {
- defer tr.runlock()
- }
- if tr.root == nil {
- return
- }
- tr.descend(tr.root, pivot, nil, 0, iter)
- }
- func (tr *BTreeG[T]) descend(n *node[T], pivot T,
- hint *PathHint, depth int, iter func(item T) bool,
- ) bool {
- i, found := tr.find(n, pivot, hint, depth)
- if !found {
- if !n.leaf() {
- if !tr.descend((*n.children)[i], pivot, hint, depth+1, iter) {
- return false
- }
- }
- i--
- }
- for ; i >= 0; i-- {
- if !iter(n.items[i]) {
- return false
- }
- if !n.leaf() {
- if !(*n.children)[i].reverse(iter) {
- return false
- }
- }
- }
- return true
- }
- // Load is for bulk loading pre-sorted items
- func (tr *BTreeG[T]) Load(item T) (T, bool) {
- if tr.lock() {
- defer tr.unlock()
- }
- if tr.root == nil {
- return tr.setHint(item, nil)
- }
- n := tr.cowLoad(&tr.root)
- for {
- n.count++ // optimistically update counts
- if n.leaf() {
- if len(n.items) < maxItems {
- if tr.Less(n.items[len(n.items)-1], item) {
- n.items = append(n.items, item)
- tr.count++
- return tr.empty, false
- }
- }
- break
- }
- n = tr.cowLoad(&(*n.children)[len(*n.children)-1])
- }
- // revert the counts
- n = tr.root
- for {
- n.count--
- if n.leaf() {
- break
- }
- n = (*n.children)[len(*n.children)-1]
- }
- return tr.setHint(item, nil)
- }
- // Min returns the minimum item in tree.
- // Returns nil if the treex has no items.
- func (tr *BTreeG[T]) Min() (T, bool) {
- if tr.rlock() {
- defer tr.runlock()
- }
- if tr.root == nil {
- return tr.empty, false
- }
- n := tr.root
- for {
- if n.leaf() {
- return n.items[0], true
- }
- n = (*n.children)[0]
- }
- }
- // Max returns the maximum item in tree.
- // Returns nil if the tree has no items.
- func (tr *BTreeG[T]) Max() (T, bool) {
- if tr.rlock() {
- defer tr.runlock()
- }
- if tr.root == nil {
- return tr.empty, false
- }
- n := tr.root
- for {
- if n.leaf() {
- return n.items[len(n.items)-1], true
- }
- n = (*n.children)[len(*n.children)-1]
- }
- }
- // PopMin removes the minimum item in tree and returns it.
- // Returns nil if the tree has no items.
- func (tr *BTreeG[T]) PopMin() (T, bool) {
- if tr.lock() {
- defer tr.unlock()
- }
- if tr.root == nil {
- return tr.empty, false
- }
- n := tr.cowLoad(&tr.root)
- var item T
- for {
- n.count-- // optimistically update counts
- if n.leaf() {
- item = n.items[0]
- if len(n.items) == minItems {
- break
- }
- copy(n.items[:], n.items[1:])
- n.items[len(n.items)-1] = tr.empty
- n.items = n.items[:len(n.items)-1]
- tr.count--
- if tr.count == 0 {
- tr.root = nil
- }
- return item, true
- }
- n = tr.cowLoad(&(*n.children)[0])
- }
- // revert the counts
- n = tr.root
- for {
- n.count++
- if n.leaf() {
- break
- }
- n = (*n.children)[0]
- }
- return tr.deleteHint(item, nil)
- }
- // PopMax removes the maximum item in tree and returns it.
- // Returns nil if the tree has no items.
- func (tr *BTreeG[T]) PopMax() (T, bool) {
- if tr.lock() {
- defer tr.unlock()
- }
- if tr.root == nil {
- return tr.empty, false
- }
- n := tr.cowLoad(&tr.root)
- var item T
- for {
- n.count-- // optimistically update counts
- if n.leaf() {
- item = n.items[len(n.items)-1]
- if len(n.items) == minItems {
- break
- }
- n.items[len(n.items)-1] = tr.empty
- n.items = n.items[:len(n.items)-1]
- tr.count--
- if tr.count == 0 {
- tr.root = nil
- }
- return item, true
- }
- n = tr.cowLoad(&(*n.children)[len(*n.children)-1])
- }
- // revert the counts
- n = tr.root
- for {
- n.count++
- if n.leaf() {
- break
- }
- n = (*n.children)[len(*n.children)-1]
- }
- return tr.deleteHint(item, nil)
- }
- // GetAt returns the value at index.
- // Return nil if the tree is empty or the index is out of bounds.
- func (tr *BTreeG[T]) GetAt(index int) (T, bool) {
- if tr.rlock() {
- defer tr.runlock()
- }
- if tr.root == nil || index < 0 || index >= tr.count {
- return tr.empty, false
- }
- n := tr.root
- for {
- if n.leaf() {
- return n.items[index], true
- }
- i := 0
- for ; i < len(n.items); i++ {
- if index < (*n.children)[i].count {
- break
- } else if index == (*n.children)[i].count {
- return n.items[i], true
- }
- index -= (*n.children)[i].count + 1
- }
- n = (*n.children)[i]
- }
- }
- // DeleteAt deletes the item at index.
- // Return nil if the tree is empty or the index is out of bounds.
- func (tr *BTreeG[T]) DeleteAt(index int) (T, bool) {
- if tr.lock() {
- defer tr.unlock()
- }
- if tr.root == nil || index < 0 || index >= tr.count {
- return tr.empty, false
- }
- var pathbuf [8]uint8 // track the path
- path := pathbuf[:0]
- var item T
- n := tr.cowLoad(&tr.root)
- outer:
- for {
- n.count-- // optimistically update counts
- if n.leaf() {
- // the index is the item position
- item = n.items[index]
- if len(n.items) == minItems {
- path = append(path, uint8(index))
- break outer
- }
- copy(n.items[index:], n.items[index+1:])
- n.items[len(n.items)-1] = tr.empty
- n.items = n.items[:len(n.items)-1]
- tr.count--
- if tr.count == 0 {
- tr.root = nil
- }
- return item, true
- }
- i := 0
- for ; i < len(n.items); i++ {
- if index < (*n.children)[i].count {
- break
- } else if index == (*n.children)[i].count {
- item = n.items[i]
- path = append(path, uint8(i))
- break outer
- }
- index -= (*n.children)[i].count + 1
- }
- path = append(path, uint8(i))
- n = tr.cowLoad(&(*n.children)[i])
- }
- // revert the counts
- var hint PathHint
- n = tr.root
- for i := 0; i < len(path); i++ {
- if i < len(hint.path) {
- hint.path[i] = uint8(path[i])
- hint.used[i] = true
- }
- n.count++
- if !n.leaf() {
- n = (*n.children)[uint8(path[i])]
- }
- }
- return tr.deleteHint(item, &hint)
- }
- // Height returns the height of the tree.
- // Returns zero if tree has no items.
- func (tr *BTreeG[T]) Height() int {
- if tr.rlock() {
- defer tr.runlock()
- }
- var height int
- if tr.root != nil {
- n := tr.root
- for {
- height++
- if n.leaf() {
- break
- }
- n = (*n.children)[0]
- }
- }
- return height
- }
- // Walk iterates over all items in tree, in order.
- // The items param will contain one or more items.
- func (tr *BTreeG[T]) Walk(iter func(item []T) bool) {
- if tr.rlock() {
- defer tr.runlock()
- }
- if tr.root != nil {
- tr.root.walk(iter)
- }
- }
- func (n *node[T]) walk(iter func(item []T) bool) bool {
- if n.leaf() {
- if !iter(n.items) {
- return false
- }
- } else {
- for i := 0; i < len(n.items); i++ {
- (*n.children)[i].walk(iter)
- if !iter(n.items[i : i+1]) {
- return false
- }
- }
- (*n.children)[len(n.items)].walk(iter)
- }
- return true
- }
- // Copy the tree. This is a copy-on-write operation and is very fast because
- // it only performs a shadowed copy.
- func (tr *BTreeG[T]) Copy() *BTreeG[T] {
- if tr.lock() {
- defer tr.unlock()
- }
- tr.cow = atomic.AddUint64(&gcow, 1)
- tr2 := new(BTreeG[T])
- *tr2 = *tr
- tr2.mu = new(sync.RWMutex)
- tr2.cow = atomic.AddUint64(&gcow, 1)
- return tr2
- }
- func (tr *BTreeG[T]) lock() bool {
- if tr.locks {
- tr.mu.Lock()
- }
- return tr.locks
- }
- func (tr *BTreeG[T]) unlock() {
- tr.mu.Unlock()
- }
- func (tr *BTreeG[T]) rlock() bool {
- if tr.locks {
- tr.mu.RLock()
- }
- return tr.locks
- }
- func (tr *BTreeG[T]) runlock() {
- tr.mu.RUnlock()
- }
- // Iter represents an iterator
- type GenericIter[T any] struct {
- tr *BTreeG[T]
- locked bool
- seeked bool
- atstart bool
- atend bool
- stack []genericIterStackItem[T]
- item T
- }
- type genericIterStackItem[T any] struct {
- n *node[T]
- i int
- }
- // Iter returns a read-only iterator.
- // The Release method must be called finished with iterator.
- func (tr *BTreeG[T]) Iter() GenericIter[T] {
- var iter GenericIter[T]
- iter.tr = tr
- iter.locked = tr.rlock()
- return iter
- }
- // Seek to item greater-or-equal-to key.
- // Returns false if there was no item found.
- func (iter *GenericIter[T]) Seek(key T) bool {
- if iter.tr == nil {
- return false
- }
- iter.seeked = true
- iter.stack = iter.stack[:0]
- if iter.tr.root == nil {
- return false
- }
- n := iter.tr.root
- for {
- i, found := iter.tr.find(n, key, nil, 0)
- iter.stack = append(iter.stack, genericIterStackItem[T]{n, i})
- if found {
- iter.item = n.items[i]
- return true
- }
- if n.leaf() {
- iter.stack[len(iter.stack)-1].i--
- return iter.Next()
- }
- n = (*n.children)[i]
- }
- }
- // First moves iterator to first item in tree.
- // Returns false if the tree is empty.
- func (iter *GenericIter[T]) First() bool {
- if iter.tr == nil {
- return false
- }
- iter.atend = false
- iter.atstart = false
- iter.seeked = true
- iter.stack = iter.stack[:0]
- if iter.tr.root == nil {
- return false
- }
- n := iter.tr.root
- for {
- iter.stack = append(iter.stack, genericIterStackItem[T]{n, 0})
- if n.leaf() {
- break
- }
- n = (*n.children)[0]
- }
- s := &iter.stack[len(iter.stack)-1]
- iter.item = s.n.items[s.i]
- return true
- }
- // Last moves iterator to last item in tree.
- // Returns false if the tree is empty.
- func (iter *GenericIter[T]) Last() bool {
- if iter.tr == nil {
- return false
- }
- iter.seeked = true
- iter.stack = iter.stack[:0]
- if iter.tr.root == nil {
- return false
- }
- n := iter.tr.root
- for {
- iter.stack = append(iter.stack, genericIterStackItem[T]{n, len(n.items)})
- if n.leaf() {
- iter.stack[len(iter.stack)-1].i--
- break
- }
- n = (*n.children)[len(n.items)]
- }
- s := &iter.stack[len(iter.stack)-1]
- iter.item = s.n.items[s.i]
- return true
- }
- // Release the iterator.
- func (iter *GenericIter[T]) Release() {
- if iter.tr == nil {
- return
- }
- if iter.locked {
- iter.tr.runlock()
- iter.locked = false
- }
- iter.stack = nil
- iter.tr = nil
- }
- // Next moves iterator to the next item in iterator.
- // Returns false if the tree is empty or the iterator is at the end of
- // the tree.
- func (iter *GenericIter[T]) Next() bool {
- if iter.tr == nil {
- return false
- }
- if !iter.seeked {
- return iter.First()
- }
- if len(iter.stack) == 0 {
- if iter.atstart {
- return iter.First() && iter.Next()
- }
- return false
- }
- s := &iter.stack[len(iter.stack)-1]
- s.i++
- if s.n.leaf() {
- if s.i == len(s.n.items) {
- for {
- iter.stack = iter.stack[:len(iter.stack)-1]
- if len(iter.stack) == 0 {
- iter.atend = true
- return false
- }
- s = &iter.stack[len(iter.stack)-1]
- if s.i < len(s.n.items) {
- break
- }
- }
- }
- } else {
- n := (*s.n.children)[s.i]
- for {
- iter.stack = append(iter.stack, genericIterStackItem[T]{n, 0})
- if n.leaf() {
- break
- }
- n = (*n.children)[0]
- }
- }
- s = &iter.stack[len(iter.stack)-1]
- iter.item = s.n.items[s.i]
- return true
- }
- // Prev moves iterator to the previous item in iterator.
- // Returns false if the tree is empty or the iterator is at the beginning of
- // the tree.
- func (iter *GenericIter[T]) Prev() bool {
- if iter.tr == nil {
- return false
- }
- if !iter.seeked {
- return false
- }
- if len(iter.stack) == 0 {
- if iter.atend {
- return iter.Last() && iter.Prev()
- }
- return false
- }
- s := &iter.stack[len(iter.stack)-1]
- if s.n.leaf() {
- s.i--
- if s.i == -1 {
- for {
- iter.stack = iter.stack[:len(iter.stack)-1]
- if len(iter.stack) == 0 {
- iter.atstart = true
- return false
- }
- s = &iter.stack[len(iter.stack)-1]
- s.i--
- if s.i > -1 {
- break
- }
- }
- }
- } else {
- n := (*s.n.children)[s.i]
- for {
- iter.stack = append(iter.stack, genericIterStackItem[T]{n, len(n.items)})
- if n.leaf() {
- iter.stack[len(iter.stack)-1].i--
- break
- }
- n = (*n.children)[len(n.items)]
- }
- }
- s = &iter.stack[len(iter.stack)-1]
- iter.item = s.n.items[s.i]
- return true
- }
- // Item returns the current iterator item.
- func (iter *GenericIter[T]) Item() T {
- return iter.item
- }
- // Items returns all the items in order.
- func (tr *BTreeG[T]) Items() []T {
- items := make([]T, 0, tr.Len())
- if tr.root != nil {
- items = tr.root.aitems(items)
- }
- return items
- }
- func (n *node[T]) aitems(items []T) []T {
- if n.leaf() {
- return append(items, n.items...)
- }
- for i := 0; i < len(n.items); i++ {
- items = (*n.children)[i].aitems(items)
- items = append(items, n.items[i])
- }
- return (*n.children)[len(*n.children)-1].aitems(items)
- }
- // Generic BTree
- // Deprecated: use BTreeG
- type Generic[T any] struct {
- *BTreeG[T]
- }
- // NewGeneric returns a generic BTree
- // Deprecated: use NewBTreeG
- func NewGeneric[T any](less func(a, b T) bool) *Generic[T] {
- return &Generic[T]{NewBTreeGOptions(less, Options{})}
- }
- // NewGenericOptions returns a generic BTree
- // Deprecated: use NewBTreeGOptions
- func NewGenericOptions[T any](less func(a, b T) bool, opts Options) *Generic[T] {
- return &Generic[T]{NewBTreeGOptions(less, opts)}
- }
- func (tr *Generic[T]) Copy() *Generic[T] {
- return &Generic[T]{tr.BTreeG.Copy()}
- }
|