123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420 |
- // Copyright (c) 2017 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- // Package field implements fast arithmetic modulo 2^255-19.
- package field
- import (
- "crypto/subtle"
- "encoding/binary"
- "errors"
- "math/bits"
- )
- // Element represents an element of the field GF(2^255-19). Note that this
- // is not a cryptographically secure group, and should only be used to interact
- // with edwards25519.Point coordinates.
- //
- // This type works similarly to math/big.Int, and all arguments and receivers
- // are allowed to alias.
- //
- // The zero value is a valid zero element.
- type Element struct {
- // An element t represents the integer
- // t.l0 + t.l1*2^51 + t.l2*2^102 + t.l3*2^153 + t.l4*2^204
- //
- // Between operations, all limbs are expected to be lower than 2^52.
- l0 uint64
- l1 uint64
- l2 uint64
- l3 uint64
- l4 uint64
- }
- const maskLow51Bits uint64 = (1 << 51) - 1
- var feZero = &Element{0, 0, 0, 0, 0}
- // Zero sets v = 0, and returns v.
- func (v *Element) Zero() *Element {
- *v = *feZero
- return v
- }
- var feOne = &Element{1, 0, 0, 0, 0}
- // One sets v = 1, and returns v.
- func (v *Element) One() *Element {
- *v = *feOne
- return v
- }
- // reduce reduces v modulo 2^255 - 19 and returns it.
- func (v *Element) reduce() *Element {
- v.carryPropagate()
- // After the light reduction we now have a field element representation
- // v < 2^255 + 2^13 * 19, but need v < 2^255 - 19.
- // If v >= 2^255 - 19, then v + 19 >= 2^255, which would overflow 2^255 - 1,
- // generating a carry. That is, c will be 0 if v < 2^255 - 19, and 1 otherwise.
- c := (v.l0 + 19) >> 51
- c = (v.l1 + c) >> 51
- c = (v.l2 + c) >> 51
- c = (v.l3 + c) >> 51
- c = (v.l4 + c) >> 51
- // If v < 2^255 - 19 and c = 0, this will be a no-op. Otherwise, it's
- // effectively applying the reduction identity to the carry.
- v.l0 += 19 * c
- v.l1 += v.l0 >> 51
- v.l0 = v.l0 & maskLow51Bits
- v.l2 += v.l1 >> 51
- v.l1 = v.l1 & maskLow51Bits
- v.l3 += v.l2 >> 51
- v.l2 = v.l2 & maskLow51Bits
- v.l4 += v.l3 >> 51
- v.l3 = v.l3 & maskLow51Bits
- // no additional carry
- v.l4 = v.l4 & maskLow51Bits
- return v
- }
- // Add sets v = a + b, and returns v.
- func (v *Element) Add(a, b *Element) *Element {
- v.l0 = a.l0 + b.l0
- v.l1 = a.l1 + b.l1
- v.l2 = a.l2 + b.l2
- v.l3 = a.l3 + b.l3
- v.l4 = a.l4 + b.l4
- // Using the generic implementation here is actually faster than the
- // assembly. Probably because the body of this function is so simple that
- // the compiler can figure out better optimizations by inlining the carry
- // propagation.
- return v.carryPropagateGeneric()
- }
- // Subtract sets v = a - b, and returns v.
- func (v *Element) Subtract(a, b *Element) *Element {
- // We first add 2 * p, to guarantee the subtraction won't underflow, and
- // then subtract b (which can be up to 2^255 + 2^13 * 19).
- v.l0 = (a.l0 + 0xFFFFFFFFFFFDA) - b.l0
- v.l1 = (a.l1 + 0xFFFFFFFFFFFFE) - b.l1
- v.l2 = (a.l2 + 0xFFFFFFFFFFFFE) - b.l2
- v.l3 = (a.l3 + 0xFFFFFFFFFFFFE) - b.l3
- v.l4 = (a.l4 + 0xFFFFFFFFFFFFE) - b.l4
- return v.carryPropagate()
- }
- // Negate sets v = -a, and returns v.
- func (v *Element) Negate(a *Element) *Element {
- return v.Subtract(feZero, a)
- }
- // Invert sets v = 1/z mod p, and returns v.
- //
- // If z == 0, Invert returns v = 0.
- func (v *Element) Invert(z *Element) *Element {
- // Inversion is implemented as exponentiation with exponent p − 2. It uses the
- // same sequence of 255 squarings and 11 multiplications as [Curve25519].
- var z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t Element
- z2.Square(z) // 2
- t.Square(&z2) // 4
- t.Square(&t) // 8
- z9.Multiply(&t, z) // 9
- z11.Multiply(&z9, &z2) // 11
- t.Square(&z11) // 22
- z2_5_0.Multiply(&t, &z9) // 31 = 2^5 - 2^0
- t.Square(&z2_5_0) // 2^6 - 2^1
- for i := 0; i < 4; i++ {
- t.Square(&t) // 2^10 - 2^5
- }
- z2_10_0.Multiply(&t, &z2_5_0) // 2^10 - 2^0
- t.Square(&z2_10_0) // 2^11 - 2^1
- for i := 0; i < 9; i++ {
- t.Square(&t) // 2^20 - 2^10
- }
- z2_20_0.Multiply(&t, &z2_10_0) // 2^20 - 2^0
- t.Square(&z2_20_0) // 2^21 - 2^1
- for i := 0; i < 19; i++ {
- t.Square(&t) // 2^40 - 2^20
- }
- t.Multiply(&t, &z2_20_0) // 2^40 - 2^0
- t.Square(&t) // 2^41 - 2^1
- for i := 0; i < 9; i++ {
- t.Square(&t) // 2^50 - 2^10
- }
- z2_50_0.Multiply(&t, &z2_10_0) // 2^50 - 2^0
- t.Square(&z2_50_0) // 2^51 - 2^1
- for i := 0; i < 49; i++ {
- t.Square(&t) // 2^100 - 2^50
- }
- z2_100_0.Multiply(&t, &z2_50_0) // 2^100 - 2^0
- t.Square(&z2_100_0) // 2^101 - 2^1
- for i := 0; i < 99; i++ {
- t.Square(&t) // 2^200 - 2^100
- }
- t.Multiply(&t, &z2_100_0) // 2^200 - 2^0
- t.Square(&t) // 2^201 - 2^1
- for i := 0; i < 49; i++ {
- t.Square(&t) // 2^250 - 2^50
- }
- t.Multiply(&t, &z2_50_0) // 2^250 - 2^0
- t.Square(&t) // 2^251 - 2^1
- t.Square(&t) // 2^252 - 2^2
- t.Square(&t) // 2^253 - 2^3
- t.Square(&t) // 2^254 - 2^4
- t.Square(&t) // 2^255 - 2^5
- return v.Multiply(&t, &z11) // 2^255 - 21
- }
- // Set sets v = a, and returns v.
- func (v *Element) Set(a *Element) *Element {
- *v = *a
- return v
- }
- // SetBytes sets v to x, where x is a 32-byte little-endian encoding. If x is
- // not of the right length, SetBytes returns nil and an error, and the
- // receiver is unchanged.
- //
- // Consistent with RFC 7748, the most significant bit (the high bit of the
- // last byte) is ignored, and non-canonical values (2^255-19 through 2^255-1)
- // are accepted. Note that this is laxer than specified by RFC 8032, but
- // consistent with most Ed25519 implementations.
- func (v *Element) SetBytes(x []byte) (*Element, error) {
- if len(x) != 32 {
- return nil, errors.New("edwards25519: invalid field element input size")
- }
- // Bits 0:51 (bytes 0:8, bits 0:64, shift 0, mask 51).
- v.l0 = binary.LittleEndian.Uint64(x[0:8])
- v.l0 &= maskLow51Bits
- // Bits 51:102 (bytes 6:14, bits 48:112, shift 3, mask 51).
- v.l1 = binary.LittleEndian.Uint64(x[6:14]) >> 3
- v.l1 &= maskLow51Bits
- // Bits 102:153 (bytes 12:20, bits 96:160, shift 6, mask 51).
- v.l2 = binary.LittleEndian.Uint64(x[12:20]) >> 6
- v.l2 &= maskLow51Bits
- // Bits 153:204 (bytes 19:27, bits 152:216, shift 1, mask 51).
- v.l3 = binary.LittleEndian.Uint64(x[19:27]) >> 1
- v.l3 &= maskLow51Bits
- // Bits 204:255 (bytes 24:32, bits 192:256, shift 12, mask 51).
- // Note: not bytes 25:33, shift 4, to avoid overread.
- v.l4 = binary.LittleEndian.Uint64(x[24:32]) >> 12
- v.l4 &= maskLow51Bits
- return v, nil
- }
- // Bytes returns the canonical 32-byte little-endian encoding of v.
- func (v *Element) Bytes() []byte {
- // This function is outlined to make the allocations inline in the caller
- // rather than happen on the heap.
- var out [32]byte
- return v.bytes(&out)
- }
- func (v *Element) bytes(out *[32]byte) []byte {
- t := *v
- t.reduce()
- var buf [8]byte
- for i, l := range [5]uint64{t.l0, t.l1, t.l2, t.l3, t.l4} {
- bitsOffset := i * 51
- binary.LittleEndian.PutUint64(buf[:], l<<uint(bitsOffset%8))
- for i, bb := range buf {
- off := bitsOffset/8 + i
- if off >= len(out) {
- break
- }
- out[off] |= bb
- }
- }
- return out[:]
- }
- // Equal returns 1 if v and u are equal, and 0 otherwise.
- func (v *Element) Equal(u *Element) int {
- sa, sv := u.Bytes(), v.Bytes()
- return subtle.ConstantTimeCompare(sa, sv)
- }
- // mask64Bits returns 0xffffffff if cond is 1, and 0 otherwise.
- func mask64Bits(cond int) uint64 { return ^(uint64(cond) - 1) }
- // Select sets v to a if cond == 1, and to b if cond == 0.
- func (v *Element) Select(a, b *Element, cond int) *Element {
- m := mask64Bits(cond)
- v.l0 = (m & a.l0) | (^m & b.l0)
- v.l1 = (m & a.l1) | (^m & b.l1)
- v.l2 = (m & a.l2) | (^m & b.l2)
- v.l3 = (m & a.l3) | (^m & b.l3)
- v.l4 = (m & a.l4) | (^m & b.l4)
- return v
- }
- // Swap swaps v and u if cond == 1 or leaves them unchanged if cond == 0, and returns v.
- func (v *Element) Swap(u *Element, cond int) {
- m := mask64Bits(cond)
- t := m & (v.l0 ^ u.l0)
- v.l0 ^= t
- u.l0 ^= t
- t = m & (v.l1 ^ u.l1)
- v.l1 ^= t
- u.l1 ^= t
- t = m & (v.l2 ^ u.l2)
- v.l2 ^= t
- u.l2 ^= t
- t = m & (v.l3 ^ u.l3)
- v.l3 ^= t
- u.l3 ^= t
- t = m & (v.l4 ^ u.l4)
- v.l4 ^= t
- u.l4 ^= t
- }
- // IsNegative returns 1 if v is negative, and 0 otherwise.
- func (v *Element) IsNegative() int {
- return int(v.Bytes()[0] & 1)
- }
- // Absolute sets v to |u|, and returns v.
- func (v *Element) Absolute(u *Element) *Element {
- return v.Select(new(Element).Negate(u), u, u.IsNegative())
- }
- // Multiply sets v = x * y, and returns v.
- func (v *Element) Multiply(x, y *Element) *Element {
- feMul(v, x, y)
- return v
- }
- // Square sets v = x * x, and returns v.
- func (v *Element) Square(x *Element) *Element {
- feSquare(v, x)
- return v
- }
- // Mult32 sets v = x * y, and returns v.
- func (v *Element) Mult32(x *Element, y uint32) *Element {
- x0lo, x0hi := mul51(x.l0, y)
- x1lo, x1hi := mul51(x.l1, y)
- x2lo, x2hi := mul51(x.l2, y)
- x3lo, x3hi := mul51(x.l3, y)
- x4lo, x4hi := mul51(x.l4, y)
- v.l0 = x0lo + 19*x4hi // carried over per the reduction identity
- v.l1 = x1lo + x0hi
- v.l2 = x2lo + x1hi
- v.l3 = x3lo + x2hi
- v.l4 = x4lo + x3hi
- // The hi portions are going to be only 32 bits, plus any previous excess,
- // so we can skip the carry propagation.
- return v
- }
- // mul51 returns lo + hi * 2⁵¹ = a * b.
- func mul51(a uint64, b uint32) (lo uint64, hi uint64) {
- mh, ml := bits.Mul64(a, uint64(b))
- lo = ml & maskLow51Bits
- hi = (mh << 13) | (ml >> 51)
- return
- }
- // Pow22523 set v = x^((p-5)/8), and returns v. (p-5)/8 is 2^252-3.
- func (v *Element) Pow22523(x *Element) *Element {
- var t0, t1, t2 Element
- t0.Square(x) // x^2
- t1.Square(&t0) // x^4
- t1.Square(&t1) // x^8
- t1.Multiply(x, &t1) // x^9
- t0.Multiply(&t0, &t1) // x^11
- t0.Square(&t0) // x^22
- t0.Multiply(&t1, &t0) // x^31
- t1.Square(&t0) // x^62
- for i := 1; i < 5; i++ { // x^992
- t1.Square(&t1)
- }
- t0.Multiply(&t1, &t0) // x^1023 -> 1023 = 2^10 - 1
- t1.Square(&t0) // 2^11 - 2
- for i := 1; i < 10; i++ { // 2^20 - 2^10
- t1.Square(&t1)
- }
- t1.Multiply(&t1, &t0) // 2^20 - 1
- t2.Square(&t1) // 2^21 - 2
- for i := 1; i < 20; i++ { // 2^40 - 2^20
- t2.Square(&t2)
- }
- t1.Multiply(&t2, &t1) // 2^40 - 1
- t1.Square(&t1) // 2^41 - 2
- for i := 1; i < 10; i++ { // 2^50 - 2^10
- t1.Square(&t1)
- }
- t0.Multiply(&t1, &t0) // 2^50 - 1
- t1.Square(&t0) // 2^51 - 2
- for i := 1; i < 50; i++ { // 2^100 - 2^50
- t1.Square(&t1)
- }
- t1.Multiply(&t1, &t0) // 2^100 - 1
- t2.Square(&t1) // 2^101 - 2
- for i := 1; i < 100; i++ { // 2^200 - 2^100
- t2.Square(&t2)
- }
- t1.Multiply(&t2, &t1) // 2^200 - 1
- t1.Square(&t1) // 2^201 - 2
- for i := 1; i < 50; i++ { // 2^250 - 2^50
- t1.Square(&t1)
- }
- t0.Multiply(&t1, &t0) // 2^250 - 1
- t0.Square(&t0) // 2^251 - 2
- t0.Square(&t0) // 2^252 - 4
- return v.Multiply(&t0, x) // 2^252 - 3 -> x^(2^252-3)
- }
- // sqrtM1 is 2^((p-1)/4), which squared is equal to -1 by Euler's Criterion.
- var sqrtM1 = &Element{1718705420411056, 234908883556509,
- 2233514472574048, 2117202627021982, 765476049583133}
- // SqrtRatio sets r to the non-negative square root of the ratio of u and v.
- //
- // If u/v is square, SqrtRatio returns r and 1. If u/v is not square, SqrtRatio
- // sets r according to Section 4.3 of draft-irtf-cfrg-ristretto255-decaf448-00,
- // and returns r and 0.
- func (r *Element) SqrtRatio(u, v *Element) (R *Element, wasSquare int) {
- t0 := new(Element)
- // r = (u * v3) * (u * v7)^((p-5)/8)
- v2 := new(Element).Square(v)
- uv3 := new(Element).Multiply(u, t0.Multiply(v2, v))
- uv7 := new(Element).Multiply(uv3, t0.Square(v2))
- rr := new(Element).Multiply(uv3, t0.Pow22523(uv7))
- check := new(Element).Multiply(v, t0.Square(rr)) // check = v * r^2
- uNeg := new(Element).Negate(u)
- correctSignSqrt := check.Equal(u)
- flippedSignSqrt := check.Equal(uNeg)
- flippedSignSqrtI := check.Equal(t0.Multiply(uNeg, sqrtM1))
- rPrime := new(Element).Multiply(rr, sqrtM1) // r_prime = SQRT_M1 * r
- // r = CT_SELECT(r_prime IF flipped_sign_sqrt | flipped_sign_sqrt_i ELSE r)
- rr.Select(rPrime, rr, flippedSignSqrt|flippedSignSqrtI)
- r.Absolute(rr) // Choose the nonnegative square root.
- return r, correctSignSqrt | flippedSignSqrt
- }
|