123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427 |
- // Copyright (c) 2017 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package edwards25519
- import (
- "errors"
- "filippo.io/edwards25519/field"
- )
- // Point types.
- type projP1xP1 struct {
- X, Y, Z, T field.Element
- }
- type projP2 struct {
- X, Y, Z field.Element
- }
- // Point represents a point on the edwards25519 curve.
- //
- // This type works similarly to math/big.Int, and all arguments and receivers
- // are allowed to alias.
- //
- // The zero value is NOT valid, and it may be used only as a receiver.
- type Point struct {
- // Make the type not comparable (i.e. used with == or as a map key), as
- // equivalent points can be represented by different Go values.
- _ incomparable
- // The point is internally represented in extended coordinates (X, Y, Z, T)
- // where x = X/Z, y = Y/Z, and xy = T/Z per https://eprint.iacr.org/2008/522.
- x, y, z, t field.Element
- }
- type incomparable [0]func()
- func checkInitialized(points ...*Point) {
- for _, p := range points {
- if p.x == (field.Element{}) && p.y == (field.Element{}) {
- panic("edwards25519: use of uninitialized Point")
- }
- }
- }
- type projCached struct {
- YplusX, YminusX, Z, T2d field.Element
- }
- type affineCached struct {
- YplusX, YminusX, T2d field.Element
- }
- // Constructors.
- func (v *projP2) Zero() *projP2 {
- v.X.Zero()
- v.Y.One()
- v.Z.One()
- return v
- }
- // identity is the point at infinity.
- var identity, _ = new(Point).SetBytes([]byte{
- 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0})
- // NewIdentityPoint returns a new Point set to the identity.
- func NewIdentityPoint() *Point {
- return new(Point).Set(identity)
- }
- // generator is the canonical curve basepoint. See TestGenerator for the
- // correspondence of this encoding with the values in RFC 8032.
- var generator, _ = new(Point).SetBytes([]byte{
- 0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
- 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
- 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
- 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66})
- // NewGeneratorPoint returns a new Point set to the canonical generator.
- func NewGeneratorPoint() *Point {
- return new(Point).Set(generator)
- }
- func (v *projCached) Zero() *projCached {
- v.YplusX.One()
- v.YminusX.One()
- v.Z.One()
- v.T2d.Zero()
- return v
- }
- func (v *affineCached) Zero() *affineCached {
- v.YplusX.One()
- v.YminusX.One()
- v.T2d.Zero()
- return v
- }
- // Assignments.
- // Set sets v = u, and returns v.
- func (v *Point) Set(u *Point) *Point {
- *v = *u
- return v
- }
- // Encoding.
- // Bytes returns the canonical 32-byte encoding of v, according to RFC 8032,
- // Section 5.1.2.
- func (v *Point) Bytes() []byte {
- // This function is outlined to make the allocations inline in the caller
- // rather than happen on the heap.
- var buf [32]byte
- return v.bytes(&buf)
- }
- func (v *Point) bytes(buf *[32]byte) []byte {
- checkInitialized(v)
- var zInv, x, y field.Element
- zInv.Invert(&v.z) // zInv = 1 / Z
- x.Multiply(&v.x, &zInv) // x = X / Z
- y.Multiply(&v.y, &zInv) // y = Y / Z
- out := copyFieldElement(buf, &y)
- out[31] |= byte(x.IsNegative() << 7)
- return out
- }
- var feOne = new(field.Element).One()
- // SetBytes sets v = x, where x is a 32-byte encoding of v. If x does not
- // represent a valid point on the curve, SetBytes returns nil and an error and
- // the receiver is unchanged. Otherwise, SetBytes returns v.
- //
- // Note that SetBytes accepts all non-canonical encodings of valid points.
- // That is, it follows decoding rules that match most implementations in
- // the ecosystem rather than RFC 8032.
- func (v *Point) SetBytes(x []byte) (*Point, error) {
- // Specifically, the non-canonical encodings that are accepted are
- // 1) the ones where the field element is not reduced (see the
- // (*field.Element).SetBytes docs) and
- // 2) the ones where the x-coordinate is zero and the sign bit is set.
- //
- // Read more at https://hdevalence.ca/blog/2020-10-04-its-25519am,
- // specifically the "Canonical A, R" section.
- y, err := new(field.Element).SetBytes(x)
- if err != nil {
- return nil, errors.New("edwards25519: invalid point encoding length")
- }
- // -x² + y² = 1 + dx²y²
- // x² + dx²y² = x²(dy² + 1) = y² - 1
- // x² = (y² - 1) / (dy² + 1)
- // u = y² - 1
- y2 := new(field.Element).Square(y)
- u := new(field.Element).Subtract(y2, feOne)
- // v = dy² + 1
- vv := new(field.Element).Multiply(y2, d)
- vv = vv.Add(vv, feOne)
- // x = +√(u/v)
- xx, wasSquare := new(field.Element).SqrtRatio(u, vv)
- if wasSquare == 0 {
- return nil, errors.New("edwards25519: invalid point encoding")
- }
- // Select the negative square root if the sign bit is set.
- xxNeg := new(field.Element).Negate(xx)
- xx = xx.Select(xxNeg, xx, int(x[31]>>7))
- v.x.Set(xx)
- v.y.Set(y)
- v.z.One()
- v.t.Multiply(xx, y) // xy = T / Z
- return v, nil
- }
- func copyFieldElement(buf *[32]byte, v *field.Element) []byte {
- copy(buf[:], v.Bytes())
- return buf[:]
- }
- // Conversions.
- func (v *projP2) FromP1xP1(p *projP1xP1) *projP2 {
- v.X.Multiply(&p.X, &p.T)
- v.Y.Multiply(&p.Y, &p.Z)
- v.Z.Multiply(&p.Z, &p.T)
- return v
- }
- func (v *projP2) FromP3(p *Point) *projP2 {
- v.X.Set(&p.x)
- v.Y.Set(&p.y)
- v.Z.Set(&p.z)
- return v
- }
- func (v *Point) fromP1xP1(p *projP1xP1) *Point {
- v.x.Multiply(&p.X, &p.T)
- v.y.Multiply(&p.Y, &p.Z)
- v.z.Multiply(&p.Z, &p.T)
- v.t.Multiply(&p.X, &p.Y)
- return v
- }
- func (v *Point) fromP2(p *projP2) *Point {
- v.x.Multiply(&p.X, &p.Z)
- v.y.Multiply(&p.Y, &p.Z)
- v.z.Square(&p.Z)
- v.t.Multiply(&p.X, &p.Y)
- return v
- }
- // d is a constant in the curve equation.
- var d, _ = new(field.Element).SetBytes([]byte{
- 0xa3, 0x78, 0x59, 0x13, 0xca, 0x4d, 0xeb, 0x75,
- 0xab, 0xd8, 0x41, 0x41, 0x4d, 0x0a, 0x70, 0x00,
- 0x98, 0xe8, 0x79, 0x77, 0x79, 0x40, 0xc7, 0x8c,
- 0x73, 0xfe, 0x6f, 0x2b, 0xee, 0x6c, 0x03, 0x52})
- var d2 = new(field.Element).Add(d, d)
- func (v *projCached) FromP3(p *Point) *projCached {
- v.YplusX.Add(&p.y, &p.x)
- v.YminusX.Subtract(&p.y, &p.x)
- v.Z.Set(&p.z)
- v.T2d.Multiply(&p.t, d2)
- return v
- }
- func (v *affineCached) FromP3(p *Point) *affineCached {
- v.YplusX.Add(&p.y, &p.x)
- v.YminusX.Subtract(&p.y, &p.x)
- v.T2d.Multiply(&p.t, d2)
- var invZ field.Element
- invZ.Invert(&p.z)
- v.YplusX.Multiply(&v.YplusX, &invZ)
- v.YminusX.Multiply(&v.YminusX, &invZ)
- v.T2d.Multiply(&v.T2d, &invZ)
- return v
- }
- // (Re)addition and subtraction.
- // Add sets v = p + q, and returns v.
- func (v *Point) Add(p, q *Point) *Point {
- checkInitialized(p, q)
- qCached := new(projCached).FromP3(q)
- result := new(projP1xP1).Add(p, qCached)
- return v.fromP1xP1(result)
- }
- // Subtract sets v = p - q, and returns v.
- func (v *Point) Subtract(p, q *Point) *Point {
- checkInitialized(p, q)
- qCached := new(projCached).FromP3(q)
- result := new(projP1xP1).Sub(p, qCached)
- return v.fromP1xP1(result)
- }
- func (v *projP1xP1) Add(p *Point, q *projCached) *projP1xP1 {
- var YplusX, YminusX, PP, MM, TT2d, ZZ2 field.Element
- YplusX.Add(&p.y, &p.x)
- YminusX.Subtract(&p.y, &p.x)
- PP.Multiply(&YplusX, &q.YplusX)
- MM.Multiply(&YminusX, &q.YminusX)
- TT2d.Multiply(&p.t, &q.T2d)
- ZZ2.Multiply(&p.z, &q.Z)
- ZZ2.Add(&ZZ2, &ZZ2)
- v.X.Subtract(&PP, &MM)
- v.Y.Add(&PP, &MM)
- v.Z.Add(&ZZ2, &TT2d)
- v.T.Subtract(&ZZ2, &TT2d)
- return v
- }
- func (v *projP1xP1) Sub(p *Point, q *projCached) *projP1xP1 {
- var YplusX, YminusX, PP, MM, TT2d, ZZ2 field.Element
- YplusX.Add(&p.y, &p.x)
- YminusX.Subtract(&p.y, &p.x)
- PP.Multiply(&YplusX, &q.YminusX) // flipped sign
- MM.Multiply(&YminusX, &q.YplusX) // flipped sign
- TT2d.Multiply(&p.t, &q.T2d)
- ZZ2.Multiply(&p.z, &q.Z)
- ZZ2.Add(&ZZ2, &ZZ2)
- v.X.Subtract(&PP, &MM)
- v.Y.Add(&PP, &MM)
- v.Z.Subtract(&ZZ2, &TT2d) // flipped sign
- v.T.Add(&ZZ2, &TT2d) // flipped sign
- return v
- }
- func (v *projP1xP1) AddAffine(p *Point, q *affineCached) *projP1xP1 {
- var YplusX, YminusX, PP, MM, TT2d, Z2 field.Element
- YplusX.Add(&p.y, &p.x)
- YminusX.Subtract(&p.y, &p.x)
- PP.Multiply(&YplusX, &q.YplusX)
- MM.Multiply(&YminusX, &q.YminusX)
- TT2d.Multiply(&p.t, &q.T2d)
- Z2.Add(&p.z, &p.z)
- v.X.Subtract(&PP, &MM)
- v.Y.Add(&PP, &MM)
- v.Z.Add(&Z2, &TT2d)
- v.T.Subtract(&Z2, &TT2d)
- return v
- }
- func (v *projP1xP1) SubAffine(p *Point, q *affineCached) *projP1xP1 {
- var YplusX, YminusX, PP, MM, TT2d, Z2 field.Element
- YplusX.Add(&p.y, &p.x)
- YminusX.Subtract(&p.y, &p.x)
- PP.Multiply(&YplusX, &q.YminusX) // flipped sign
- MM.Multiply(&YminusX, &q.YplusX) // flipped sign
- TT2d.Multiply(&p.t, &q.T2d)
- Z2.Add(&p.z, &p.z)
- v.X.Subtract(&PP, &MM)
- v.Y.Add(&PP, &MM)
- v.Z.Subtract(&Z2, &TT2d) // flipped sign
- v.T.Add(&Z2, &TT2d) // flipped sign
- return v
- }
- // Doubling.
- func (v *projP1xP1) Double(p *projP2) *projP1xP1 {
- var XX, YY, ZZ2, XplusYsq field.Element
- XX.Square(&p.X)
- YY.Square(&p.Y)
- ZZ2.Square(&p.Z)
- ZZ2.Add(&ZZ2, &ZZ2)
- XplusYsq.Add(&p.X, &p.Y)
- XplusYsq.Square(&XplusYsq)
- v.Y.Add(&YY, &XX)
- v.Z.Subtract(&YY, &XX)
- v.X.Subtract(&XplusYsq, &v.Y)
- v.T.Subtract(&ZZ2, &v.Z)
- return v
- }
- // Negation.
- // Negate sets v = -p, and returns v.
- func (v *Point) Negate(p *Point) *Point {
- checkInitialized(p)
- v.x.Negate(&p.x)
- v.y.Set(&p.y)
- v.z.Set(&p.z)
- v.t.Negate(&p.t)
- return v
- }
- // Equal returns 1 if v is equivalent to u, and 0 otherwise.
- func (v *Point) Equal(u *Point) int {
- checkInitialized(v, u)
- var t1, t2, t3, t4 field.Element
- t1.Multiply(&v.x, &u.z)
- t2.Multiply(&u.x, &v.z)
- t3.Multiply(&v.y, &u.z)
- t4.Multiply(&u.y, &v.z)
- return t1.Equal(&t2) & t3.Equal(&t4)
- }
- // Constant-time operations
- // Select sets v to a if cond == 1 and to b if cond == 0.
- func (v *projCached) Select(a, b *projCached, cond int) *projCached {
- v.YplusX.Select(&a.YplusX, &b.YplusX, cond)
- v.YminusX.Select(&a.YminusX, &b.YminusX, cond)
- v.Z.Select(&a.Z, &b.Z, cond)
- v.T2d.Select(&a.T2d, &b.T2d, cond)
- return v
- }
- // Select sets v to a if cond == 1 and to b if cond == 0.
- func (v *affineCached) Select(a, b *affineCached, cond int) *affineCached {
- v.YplusX.Select(&a.YplusX, &b.YplusX, cond)
- v.YminusX.Select(&a.YminusX, &b.YminusX, cond)
- v.T2d.Select(&a.T2d, &b.T2d, cond)
- return v
- }
- // CondNeg negates v if cond == 1 and leaves it unchanged if cond == 0.
- func (v *projCached) CondNeg(cond int) *projCached {
- v.YplusX.Swap(&v.YminusX, cond)
- v.T2d.Select(new(field.Element).Negate(&v.T2d), &v.T2d, cond)
- return v
- }
- // CondNeg negates v if cond == 1 and leaves it unchanged if cond == 0.
- func (v *affineCached) CondNeg(cond int) *affineCached {
- v.YplusX.Swap(&v.YminusX, cond)
- v.T2d.Select(new(field.Element).Negate(&v.T2d), &v.T2d, cond)
- return v
- }
|