123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235 |
- // Package xxhash implements the 64-bit variant of xxHash (XXH64) as described
- // at http://cyan4973.github.io/xxHash/.
- package xxhash
- import (
- "encoding/binary"
- "errors"
- "math/bits"
- )
- const (
- prime1 uint64 = 11400714785074694791
- prime2 uint64 = 14029467366897019727
- prime3 uint64 = 1609587929392839161
- prime4 uint64 = 9650029242287828579
- prime5 uint64 = 2870177450012600261
- )
- // NOTE(caleb): I'm using both consts and vars of the primes. Using consts where
- // possible in the Go code is worth a small (but measurable) performance boost
- // by avoiding some MOVQs. Vars are needed for the asm and also are useful for
- // convenience in the Go code in a few places where we need to intentionally
- // avoid constant arithmetic (e.g., v1 := prime1 + prime2 fails because the
- // result overflows a uint64).
- var (
- prime1v = prime1
- prime2v = prime2
- prime3v = prime3
- prime4v = prime4
- prime5v = prime5
- )
- // Digest implements hash.Hash64.
- type Digest struct {
- v1 uint64
- v2 uint64
- v3 uint64
- v4 uint64
- total uint64
- mem [32]byte
- n int // how much of mem is used
- }
- // New creates a new Digest that computes the 64-bit xxHash algorithm.
- func New() *Digest {
- var d Digest
- d.Reset()
- return &d
- }
- // Reset clears the Digest's state so that it can be reused.
- func (d *Digest) Reset() {
- d.v1 = prime1v + prime2
- d.v2 = prime2
- d.v3 = 0
- d.v4 = -prime1v
- d.total = 0
- d.n = 0
- }
- // Size always returns 8 bytes.
- func (d *Digest) Size() int { return 8 }
- // BlockSize always returns 32 bytes.
- func (d *Digest) BlockSize() int { return 32 }
- // Write adds more data to d. It always returns len(b), nil.
- func (d *Digest) Write(b []byte) (n int, err error) {
- n = len(b)
- d.total += uint64(n)
- if d.n+n < 32 {
- // This new data doesn't even fill the current block.
- copy(d.mem[d.n:], b)
- d.n += n
- return
- }
- if d.n > 0 {
- // Finish off the partial block.
- copy(d.mem[d.n:], b)
- d.v1 = round(d.v1, u64(d.mem[0:8]))
- d.v2 = round(d.v2, u64(d.mem[8:16]))
- d.v3 = round(d.v3, u64(d.mem[16:24]))
- d.v4 = round(d.v4, u64(d.mem[24:32]))
- b = b[32-d.n:]
- d.n = 0
- }
- if len(b) >= 32 {
- // One or more full blocks left.
- nw := writeBlocks(d, b)
- b = b[nw:]
- }
- // Store any remaining partial block.
- copy(d.mem[:], b)
- d.n = len(b)
- return
- }
- // Sum appends the current hash to b and returns the resulting slice.
- func (d *Digest) Sum(b []byte) []byte {
- s := d.Sum64()
- return append(
- b,
- byte(s>>56),
- byte(s>>48),
- byte(s>>40),
- byte(s>>32),
- byte(s>>24),
- byte(s>>16),
- byte(s>>8),
- byte(s),
- )
- }
- // Sum64 returns the current hash.
- func (d *Digest) Sum64() uint64 {
- var h uint64
- if d.total >= 32 {
- v1, v2, v3, v4 := d.v1, d.v2, d.v3, d.v4
- h = rol1(v1) + rol7(v2) + rol12(v3) + rol18(v4)
- h = mergeRound(h, v1)
- h = mergeRound(h, v2)
- h = mergeRound(h, v3)
- h = mergeRound(h, v4)
- } else {
- h = d.v3 + prime5
- }
- h += d.total
- i, end := 0, d.n
- for ; i+8 <= end; i += 8 {
- k1 := round(0, u64(d.mem[i:i+8]))
- h ^= k1
- h = rol27(h)*prime1 + prime4
- }
- if i+4 <= end {
- h ^= uint64(u32(d.mem[i:i+4])) * prime1
- h = rol23(h)*prime2 + prime3
- i += 4
- }
- for i < end {
- h ^= uint64(d.mem[i]) * prime5
- h = rol11(h) * prime1
- i++
- }
- h ^= h >> 33
- h *= prime2
- h ^= h >> 29
- h *= prime3
- h ^= h >> 32
- return h
- }
- const (
- magic = "xxh\x06"
- marshaledSize = len(magic) + 8*5 + 32
- )
- // MarshalBinary implements the encoding.BinaryMarshaler interface.
- func (d *Digest) MarshalBinary() ([]byte, error) {
- b := make([]byte, 0, marshaledSize)
- b = append(b, magic...)
- b = appendUint64(b, d.v1)
- b = appendUint64(b, d.v2)
- b = appendUint64(b, d.v3)
- b = appendUint64(b, d.v4)
- b = appendUint64(b, d.total)
- b = append(b, d.mem[:d.n]...)
- b = b[:len(b)+len(d.mem)-d.n]
- return b, nil
- }
- // UnmarshalBinary implements the encoding.BinaryUnmarshaler interface.
- func (d *Digest) UnmarshalBinary(b []byte) error {
- if len(b) < len(magic) || string(b[:len(magic)]) != magic {
- return errors.New("xxhash: invalid hash state identifier")
- }
- if len(b) != marshaledSize {
- return errors.New("xxhash: invalid hash state size")
- }
- b = b[len(magic):]
- b, d.v1 = consumeUint64(b)
- b, d.v2 = consumeUint64(b)
- b, d.v3 = consumeUint64(b)
- b, d.v4 = consumeUint64(b)
- b, d.total = consumeUint64(b)
- copy(d.mem[:], b)
- d.n = int(d.total % uint64(len(d.mem)))
- return nil
- }
- func appendUint64(b []byte, x uint64) []byte {
- var a [8]byte
- binary.LittleEndian.PutUint64(a[:], x)
- return append(b, a[:]...)
- }
- func consumeUint64(b []byte) ([]byte, uint64) {
- x := u64(b)
- return b[8:], x
- }
- func u64(b []byte) uint64 { return binary.LittleEndian.Uint64(b) }
- func u32(b []byte) uint32 { return binary.LittleEndian.Uint32(b) }
- func round(acc, input uint64) uint64 {
- acc += input * prime2
- acc = rol31(acc)
- acc *= prime1
- return acc
- }
- func mergeRound(acc, val uint64) uint64 {
- val = round(0, val)
- acc ^= val
- acc = acc*prime1 + prime4
- return acc
- }
- func rol1(x uint64) uint64 { return bits.RotateLeft64(x, 1) }
- func rol7(x uint64) uint64 { return bits.RotateLeft64(x, 7) }
- func rol11(x uint64) uint64 { return bits.RotateLeft64(x, 11) }
- func rol12(x uint64) uint64 { return bits.RotateLeft64(x, 12) }
- func rol18(x uint64) uint64 { return bits.RotateLeft64(x, 18) }
- func rol23(x uint64) uint64 { return bits.RotateLeft64(x, 23) }
- func rol27(x uint64) uint64 { return bits.RotateLeft64(x, 27) }
- func rol31(x uint64) uint64 { return bits.RotateLeft64(x, 31) }
|