1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003 |
- // Copyright 2009 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- // Package asn1 implements parsing of DER-encoded ASN.1 data structures,
- // as defined in ITU-T Rec X.690.
- //
- // See also ``A Layman's Guide to a Subset of ASN.1, BER, and DER,''
- // http://luca.ntop.org/Teaching/Appunti/asn1.html.
- package asn1
- // ASN.1 is a syntax for specifying abstract objects and BER, DER, PER, XER etc
- // are different encoding formats for those objects. Here, we'll be dealing
- // with DER, the Distinguished Encoding Rules. DER is used in X.509 because
- // it's fast to parse and, unlike BER, has a unique encoding for every object.
- // When calculating hashes over objects, it's important that the resulting
- // bytes be the same at both ends and DER removes this margin of error.
- //
- // ASN.1 is very complex and this package doesn't attempt to implement
- // everything by any means.
- import (
- "errors"
- "fmt"
- "math/big"
- "reflect"
- "strconv"
- "time"
- "unicode/utf8"
- )
- // A StructuralError suggests that the ASN.1 data is valid, but the Go type
- // which is receiving it doesn't match.
- type StructuralError struct {
- Msg string
- }
- func (e StructuralError) Error() string { return "asn1: structure error: " + e.Msg }
- // A SyntaxError suggests that the ASN.1 data is invalid.
- type SyntaxError struct {
- Msg string
- }
- func (e SyntaxError) Error() string { return "asn1: syntax error: " + e.Msg }
- // We start by dealing with each of the primitive types in turn.
- // BOOLEAN
- func parseBool(bytes []byte) (ret bool, err error) {
- if len(bytes) != 1 {
- err = SyntaxError{"invalid boolean"}
- return
- }
- // DER demands that "If the encoding represents the boolean value TRUE,
- // its single contents octet shall have all eight bits set to one."
- // Thus only 0 and 255 are valid encoded values.
- switch bytes[0] {
- case 0:
- ret = false
- case 0xff:
- ret = true
- default:
- err = SyntaxError{"invalid boolean"}
- }
- return
- }
- // INTEGER
- // checkInteger returns nil if the given bytes are a valid DER-encoded
- // INTEGER and an error otherwise.
- func checkInteger(bytes []byte) error {
- if len(bytes) == 0 {
- return StructuralError{"empty integer"}
- }
- if len(bytes) == 1 {
- return nil
- }
- if (bytes[0] == 0 && bytes[1]&0x80 == 0) || (bytes[0] == 0xff && bytes[1]&0x80 == 0x80) {
- return StructuralError{"integer not minimally-encoded"}
- }
- return nil
- }
- // parseInt64 treats the given bytes as a big-endian, signed integer and
- // returns the result.
- func parseInt64(bytes []byte) (ret int64, err error) {
- err = checkInteger(bytes)
- if err != nil {
- return
- }
- if len(bytes) > 8 {
- // We'll overflow an int64 in this case.
- err = StructuralError{"integer too large"}
- return
- }
- for bytesRead := 0; bytesRead < len(bytes); bytesRead++ {
- ret <<= 8
- ret |= int64(bytes[bytesRead])
- }
- // Shift up and down in order to sign extend the result.
- ret <<= 64 - uint8(len(bytes))*8
- ret >>= 64 - uint8(len(bytes))*8
- return
- }
- // parseInt treats the given bytes as a big-endian, signed integer and returns
- // the result.
- func parseInt32(bytes []byte) (int32, error) {
- if err := checkInteger(bytes); err != nil {
- return 0, err
- }
- ret64, err := parseInt64(bytes)
- if err != nil {
- return 0, err
- }
- if ret64 != int64(int32(ret64)) {
- return 0, StructuralError{"integer too large"}
- }
- return int32(ret64), nil
- }
- var bigOne = big.NewInt(1)
- // parseBigInt treats the given bytes as a big-endian, signed integer and returns
- // the result.
- func parseBigInt(bytes []byte) (*big.Int, error) {
- if err := checkInteger(bytes); err != nil {
- return nil, err
- }
- ret := new(big.Int)
- if len(bytes) > 0 && bytes[0]&0x80 == 0x80 {
- // This is a negative number.
- notBytes := make([]byte, len(bytes))
- for i := range notBytes {
- notBytes[i] = ^bytes[i]
- }
- ret.SetBytes(notBytes)
- ret.Add(ret, bigOne)
- ret.Neg(ret)
- return ret, nil
- }
- ret.SetBytes(bytes)
- return ret, nil
- }
- // BIT STRING
- // BitString is the structure to use when you want an ASN.1 BIT STRING type. A
- // bit string is padded up to the nearest byte in memory and the number of
- // valid bits is recorded. Padding bits will be zero.
- type BitString struct {
- Bytes []byte // bits packed into bytes.
- BitLength int // length in bits.
- }
- // At returns the bit at the given index. If the index is out of range it
- // returns false.
- func (b BitString) At(i int) int {
- if i < 0 || i >= b.BitLength {
- return 0
- }
- x := i / 8
- y := 7 - uint(i%8)
- return int(b.Bytes[x]>>y) & 1
- }
- // RightAlign returns a slice where the padding bits are at the beginning. The
- // slice may share memory with the BitString.
- func (b BitString) RightAlign() []byte {
- shift := uint(8 - (b.BitLength % 8))
- if shift == 8 || len(b.Bytes) == 0 {
- return b.Bytes
- }
- a := make([]byte, len(b.Bytes))
- a[0] = b.Bytes[0] >> shift
- for i := 1; i < len(b.Bytes); i++ {
- a[i] = b.Bytes[i-1] << (8 - shift)
- a[i] |= b.Bytes[i] >> shift
- }
- return a
- }
- // parseBitString parses an ASN.1 bit string from the given byte slice and returns it.
- func parseBitString(bytes []byte) (ret BitString, err error) {
- if len(bytes) == 0 {
- err = SyntaxError{"zero length BIT STRING"}
- return
- }
- paddingBits := int(bytes[0])
- if paddingBits > 7 ||
- len(bytes) == 1 && paddingBits > 0 ||
- bytes[len(bytes)-1]&((1<<bytes[0])-1) != 0 {
- err = SyntaxError{"invalid padding bits in BIT STRING"}
- return
- }
- ret.BitLength = (len(bytes)-1)*8 - paddingBits
- ret.Bytes = bytes[1:]
- return
- }
- // OBJECT IDENTIFIER
- // An ObjectIdentifier represents an ASN.1 OBJECT IDENTIFIER.
- type ObjectIdentifier []int
- // Equal reports whether oi and other represent the same identifier.
- func (oi ObjectIdentifier) Equal(other ObjectIdentifier) bool {
- if len(oi) != len(other) {
- return false
- }
- for i := 0; i < len(oi); i++ {
- if oi[i] != other[i] {
- return false
- }
- }
- return true
- }
- func (oi ObjectIdentifier) String() string {
- var s string
- for i, v := range oi {
- if i > 0 {
- s += "."
- }
- s += strconv.Itoa(v)
- }
- return s
- }
- // parseObjectIdentifier parses an OBJECT IDENTIFIER from the given bytes and
- // returns it. An object identifier is a sequence of variable length integers
- // that are assigned in a hierarchy.
- func parseObjectIdentifier(bytes []byte) (s []int, err error) {
- if len(bytes) == 0 {
- err = SyntaxError{"zero length OBJECT IDENTIFIER"}
- return
- }
- // In the worst case, we get two elements from the first byte (which is
- // encoded differently) and then every varint is a single byte long.
- s = make([]int, len(bytes)+1)
- // The first varint is 40*value1 + value2:
- // According to this packing, value1 can take the values 0, 1 and 2 only.
- // When value1 = 0 or value1 = 1, then value2 is <= 39. When value1 = 2,
- // then there are no restrictions on value2.
- v, offset, err := parseBase128Int(bytes, 0)
- if err != nil {
- return
- }
- if v < 80 {
- s[0] = v / 40
- s[1] = v % 40
- } else {
- s[0] = 2
- s[1] = v - 80
- }
- i := 2
- for ; offset < len(bytes); i++ {
- v, offset, err = parseBase128Int(bytes, offset)
- if err != nil {
- return
- }
- s[i] = v
- }
- s = s[0:i]
- return
- }
- // ENUMERATED
- // An Enumerated is represented as a plain int.
- type Enumerated int
- // FLAG
- // A Flag accepts any data and is set to true if present.
- type Flag bool
- // parseBase128Int parses a base-128 encoded int from the given offset in the
- // given byte slice. It returns the value and the new offset.
- func parseBase128Int(bytes []byte, initOffset int) (ret, offset int, err error) {
- offset = initOffset
- for shifted := 0; offset < len(bytes); shifted++ {
- if shifted == 4 {
- err = StructuralError{"base 128 integer too large"}
- return
- }
- ret <<= 7
- b := bytes[offset]
- ret |= int(b & 0x7f)
- offset++
- if b&0x80 == 0 {
- return
- }
- }
- err = SyntaxError{"truncated base 128 integer"}
- return
- }
- // UTCTime
- func parseUTCTime(bytes []byte) (ret time.Time, err error) {
- s := string(bytes)
- formatStr := "0601021504Z0700"
- ret, err = time.Parse(formatStr, s)
- if err != nil {
- formatStr = "060102150405Z0700"
- ret, err = time.Parse(formatStr, s)
- }
- if err != nil {
- return
- }
- if serialized := ret.Format(formatStr); serialized != s {
- err = fmt.Errorf("asn1: time did not serialize back to the original value and may be invalid: given %q, but serialized as %q", s, serialized)
- return
- }
- if ret.Year() >= 2050 {
- // UTCTime only encodes times prior to 2050. See https://tools.ietf.org/html/rfc5280#section-4.1.2.5.1
- ret = ret.AddDate(-100, 0, 0)
- }
- return
- }
- // parseGeneralizedTime parses the GeneralizedTime from the given byte slice
- // and returns the resulting time.
- func parseGeneralizedTime(bytes []byte) (ret time.Time, err error) {
- const formatStr = "20060102150405Z0700"
- s := string(bytes)
- if ret, err = time.Parse(formatStr, s); err != nil {
- return
- }
- if serialized := ret.Format(formatStr); serialized != s {
- err = fmt.Errorf("asn1: time did not serialize back to the original value and may be invalid: given %q, but serialized as %q", s, serialized)
- }
- return
- }
- // PrintableString
- // parsePrintableString parses a ASN.1 PrintableString from the given byte
- // array and returns it.
- func parsePrintableString(bytes []byte) (ret string, err error) {
- for _, b := range bytes {
- if !isPrintable(b) {
- err = SyntaxError{"PrintableString contains invalid character"}
- return
- }
- }
- ret = string(bytes)
- return
- }
- // isPrintable reports whether the given b is in the ASN.1 PrintableString set.
- func isPrintable(b byte) bool {
- return 'a' <= b && b <= 'z' ||
- 'A' <= b && b <= 'Z' ||
- '0' <= b && b <= '9' ||
- '\'' <= b && b <= ')' ||
- '+' <= b && b <= '/' ||
- b == ' ' ||
- b == ':' ||
- b == '=' ||
- b == '?' ||
- // This is technically not allowed in a PrintableString.
- // However, x509 certificates with wildcard strings don't
- // always use the correct string type so we permit it.
- b == '*'
- }
- // IA5String
- // parseIA5String parses a ASN.1 IA5String (ASCII string) from the given
- // byte slice and returns it.
- func parseIA5String(bytes []byte) (ret string, err error) {
- for _, b := range bytes {
- if b >= utf8.RuneSelf {
- err = SyntaxError{"IA5String contains invalid character"}
- return
- }
- }
- ret = string(bytes)
- return
- }
- // T61String
- // parseT61String parses a ASN.1 T61String (8-bit clean string) from the given
- // byte slice and returns it.
- func parseT61String(bytes []byte) (ret string, err error) {
- return string(bytes), nil
- }
- // UTF8String
- // parseUTF8String parses a ASN.1 UTF8String (raw UTF-8) from the given byte
- // array and returns it.
- func parseUTF8String(bytes []byte) (ret string, err error) {
- if !utf8.Valid(bytes) {
- return "", errors.New("asn1: invalid UTF-8 string")
- }
- return string(bytes), nil
- }
- // A RawValue represents an undecoded ASN.1 object.
- type RawValue struct {
- Class, Tag int
- IsCompound bool
- Bytes []byte
- FullBytes []byte // includes the tag and length
- }
- // RawContent is used to signal that the undecoded, DER data needs to be
- // preserved for a struct. To use it, the first field of the struct must have
- // this type. It's an error for any of the other fields to have this type.
- type RawContent []byte
- // Tagging
- // parseTagAndLength parses an ASN.1 tag and length pair from the given offset
- // into a byte slice. It returns the parsed data and the new offset. SET and
- // SET OF (tag 17) are mapped to SEQUENCE and SEQUENCE OF (tag 16) since we
- // don't distinguish between ordered and unordered objects in this code.
- func parseTagAndLength(bytes []byte, initOffset int) (ret tagAndLength, offset int, err error) {
- offset = initOffset
- // parseTagAndLength should not be called without at least a single
- // byte to read. Thus this check is for robustness:
- if offset >= len(bytes) {
- err = errors.New("asn1: internal error in parseTagAndLength")
- return
- }
- b := bytes[offset]
- offset++
- ret.class = int(b >> 6)
- ret.isCompound = b&0x20 == 0x20
- ret.tag = int(b & 0x1f)
- // If the bottom five bits are set, then the tag number is actually base 128
- // encoded afterwards
- if ret.tag == 0x1f {
- ret.tag, offset, err = parseBase128Int(bytes, offset)
- if err != nil {
- return
- }
- // Tags should be encoded in minimal form.
- if ret.tag < 0x1f {
- err = SyntaxError{"non-minimal tag"}
- return
- }
- }
- if offset >= len(bytes) {
- err = SyntaxError{"truncated tag or length"}
- return
- }
- b = bytes[offset]
- offset++
- if b&0x80 == 0 {
- // The length is encoded in the bottom 7 bits.
- ret.length = int(b & 0x7f)
- } else {
- // Bottom 7 bits give the number of length bytes to follow.
- numBytes := int(b & 0x7f)
- if numBytes == 0 {
- err = SyntaxError{"indefinite length found (not DER)"}
- return
- }
- ret.length = 0
- for i := 0; i < numBytes; i++ {
- if offset >= len(bytes) {
- err = SyntaxError{"truncated tag or length"}
- return
- }
- b = bytes[offset]
- offset++
- if ret.length >= 1<<23 {
- // We can't shift ret.length up without
- // overflowing.
- err = StructuralError{"length too large"}
- return
- }
- ret.length <<= 8
- ret.length |= int(b)
- if ret.length == 0 {
- // DER requires that lengths be minimal.
- err = StructuralError{"superfluous leading zeros in length"}
- return
- }
- }
- // Short lengths must be encoded in short form.
- if ret.length < 0x80 {
- err = StructuralError{"non-minimal length"}
- return
- }
- }
- return
- }
- // parseSequenceOf is used for SEQUENCE OF and SET OF values. It tries to parse
- // a number of ASN.1 values from the given byte slice and returns them as a
- // slice of Go values of the given type.
- func parseSequenceOf(bytes []byte, sliceType reflect.Type, elemType reflect.Type) (ret reflect.Value, err error) {
- expectedTag, compoundType, ok := getUniversalType(elemType)
- if !ok {
- err = StructuralError{"unknown Go type for slice"}
- return
- }
- // First we iterate over the input and count the number of elements,
- // checking that the types are correct in each case.
- numElements := 0
- for offset := 0; offset < len(bytes); {
- var t tagAndLength
- t, offset, err = parseTagAndLength(bytes, offset)
- if err != nil {
- return
- }
- switch t.tag {
- case TagIA5String, TagGeneralString, TagT61String, TagUTF8String:
- // We pretend that various other string types are
- // PRINTABLE STRINGs so that a sequence of them can be
- // parsed into a []string.
- t.tag = TagPrintableString
- case TagGeneralizedTime, TagUTCTime:
- // Likewise, both time types are treated the same.
- t.tag = TagUTCTime
- }
- if t.class != ClassUniversal || t.isCompound != compoundType || t.tag != expectedTag {
- err = StructuralError{"sequence tag mismatch"}
- return
- }
- if invalidLength(offset, t.length, len(bytes)) {
- err = SyntaxError{"truncated sequence"}
- return
- }
- offset += t.length
- numElements++
- }
- ret = reflect.MakeSlice(sliceType, numElements, numElements)
- params := fieldParameters{}
- offset := 0
- for i := 0; i < numElements; i++ {
- offset, err = parseField(ret.Index(i), bytes, offset, params)
- if err != nil {
- return
- }
- }
- return
- }
- var (
- bitStringType = reflect.TypeOf(BitString{})
- objectIdentifierType = reflect.TypeOf(ObjectIdentifier{})
- enumeratedType = reflect.TypeOf(Enumerated(0))
- flagType = reflect.TypeOf(Flag(false))
- timeType = reflect.TypeOf(time.Time{})
- rawValueType = reflect.TypeOf(RawValue{})
- rawContentsType = reflect.TypeOf(RawContent(nil))
- bigIntType = reflect.TypeOf(new(big.Int))
- )
- // invalidLength returns true iff offset + length > sliceLength, or if the
- // addition would overflow.
- func invalidLength(offset, length, sliceLength int) bool {
- return offset+length < offset || offset+length > sliceLength
- }
- // parseField is the main parsing function. Given a byte slice and an offset
- // into the array, it will try to parse a suitable ASN.1 value out and store it
- // in the given Value.
- func parseField(v reflect.Value, bytes []byte, initOffset int, params fieldParameters) (offset int, err error) {
- offset = initOffset
- fieldType := v.Type()
- // If we have run out of data, it may be that there are optional elements at the end.
- if offset == len(bytes) {
- if !setDefaultValue(v, params) {
- err = SyntaxError{"sequence truncated"}
- }
- return
- }
- // Deal with raw values.
- if fieldType == rawValueType {
- var t tagAndLength
- t, offset, err = parseTagAndLength(bytes, offset)
- if err != nil {
- return
- }
- if invalidLength(offset, t.length, len(bytes)) {
- err = SyntaxError{"data truncated"}
- return
- }
- result := RawValue{t.class, t.tag, t.isCompound, bytes[offset : offset+t.length], bytes[initOffset : offset+t.length]}
- offset += t.length
- v.Set(reflect.ValueOf(result))
- return
- }
- // Deal with the ANY type.
- if ifaceType := fieldType; ifaceType.Kind() == reflect.Interface && ifaceType.NumMethod() == 0 {
- var t tagAndLength
- t, offset, err = parseTagAndLength(bytes, offset)
- if err != nil {
- return
- }
- if invalidLength(offset, t.length, len(bytes)) {
- err = SyntaxError{"data truncated"}
- return
- }
- var result interface{}
- if !t.isCompound && t.class == ClassUniversal {
- innerBytes := bytes[offset : offset+t.length]
- switch t.tag {
- case TagPrintableString:
- result, err = parsePrintableString(innerBytes)
- case TagIA5String:
- result, err = parseIA5String(innerBytes)
- // jtasn1 addition of following case
- case TagGeneralString:
- result, err = parseIA5String(innerBytes)
- case TagT61String:
- result, err = parseT61String(innerBytes)
- case TagUTF8String:
- result, err = parseUTF8String(innerBytes)
- case TagInteger:
- result, err = parseInt64(innerBytes)
- case TagBitString:
- result, err = parseBitString(innerBytes)
- case TagOID:
- result, err = parseObjectIdentifier(innerBytes)
- case TagUTCTime:
- result, err = parseUTCTime(innerBytes)
- case TagGeneralizedTime:
- result, err = parseGeneralizedTime(innerBytes)
- case TagOctetString:
- result = innerBytes
- default:
- // If we don't know how to handle the type, we just leave Value as nil.
- }
- }
- offset += t.length
- if err != nil {
- return
- }
- if result != nil {
- v.Set(reflect.ValueOf(result))
- }
- return
- }
- universalTag, compoundType, ok1 := getUniversalType(fieldType)
- if !ok1 {
- err = StructuralError{fmt.Sprintf("unknown Go type: %v", fieldType)}
- return
- }
- t, offset, err := parseTagAndLength(bytes, offset)
- if err != nil {
- return
- }
- if params.explicit {
- expectedClass := ClassContextSpecific
- if params.application {
- expectedClass = ClassApplication
- }
- if offset == len(bytes) {
- err = StructuralError{"explicit tag has no child"}
- return
- }
- if t.class == expectedClass && t.tag == *params.tag && (t.length == 0 || t.isCompound) {
- if t.length > 0 {
- t, offset, err = parseTagAndLength(bytes, offset)
- if err != nil {
- return
- }
- } else {
- if fieldType != flagType {
- err = StructuralError{"zero length explicit tag was not an asn1.Flag"}
- return
- }
- v.SetBool(true)
- return
- }
- } else {
- // The tags didn't match, it might be an optional element.
- ok := setDefaultValue(v, params)
- if ok {
- offset = initOffset
- } else {
- err = StructuralError{"explicitly tagged member didn't match"}
- }
- return
- }
- }
- // Special case for strings: all the ASN.1 string types map to the Go
- // type string. getUniversalType returns the tag for PrintableString
- // when it sees a string, so if we see a different string type on the
- // wire, we change the universal type to match.
- if universalTag == TagPrintableString {
- if t.class == ClassUniversal {
- switch t.tag {
- case TagIA5String, TagGeneralString, TagT61String, TagUTF8String:
- universalTag = t.tag
- }
- } else if params.stringType != 0 {
- universalTag = params.stringType
- }
- }
- // Special case for time: UTCTime and GeneralizedTime both map to the
- // Go type time.Time.
- if universalTag == TagUTCTime && t.tag == TagGeneralizedTime && t.class == ClassUniversal {
- universalTag = TagGeneralizedTime
- }
- if params.set {
- universalTag = TagSet
- }
- expectedClass := ClassUniversal
- expectedTag := universalTag
- if !params.explicit && params.tag != nil {
- expectedClass = ClassContextSpecific
- expectedTag = *params.tag
- }
- if !params.explicit && params.application && params.tag != nil {
- expectedClass = ClassApplication
- expectedTag = *params.tag
- }
- // We have unwrapped any explicit tagging at this point.
- if t.class != expectedClass || t.tag != expectedTag || t.isCompound != compoundType {
- // Tags don't match. Again, it could be an optional element.
- ok := setDefaultValue(v, params)
- if ok {
- offset = initOffset
- } else {
- err = StructuralError{fmt.Sprintf("tags don't match (%d vs %+v) %+v %s @%d", expectedTag, t, params, fieldType.Name(), offset)}
- }
- return
- }
- if invalidLength(offset, t.length, len(bytes)) {
- err = SyntaxError{"data truncated"}
- return
- }
- innerBytes := bytes[offset : offset+t.length]
- offset += t.length
- // We deal with the structures defined in this package first.
- switch fieldType {
- case objectIdentifierType:
- newSlice, err1 := parseObjectIdentifier(innerBytes)
- v.Set(reflect.MakeSlice(v.Type(), len(newSlice), len(newSlice)))
- if err1 == nil {
- reflect.Copy(v, reflect.ValueOf(newSlice))
- }
- err = err1
- return
- case bitStringType:
- bs, err1 := parseBitString(innerBytes)
- if err1 == nil {
- v.Set(reflect.ValueOf(bs))
- }
- err = err1
- return
- case timeType:
- var time time.Time
- var err1 error
- if universalTag == TagUTCTime {
- time, err1 = parseUTCTime(innerBytes)
- } else {
- time, err1 = parseGeneralizedTime(innerBytes)
- }
- if err1 == nil {
- v.Set(reflect.ValueOf(time))
- }
- err = err1
- return
- case enumeratedType:
- parsedInt, err1 := parseInt32(innerBytes)
- if err1 == nil {
- v.SetInt(int64(parsedInt))
- }
- err = err1
- return
- case flagType:
- v.SetBool(true)
- return
- case bigIntType:
- parsedInt, err1 := parseBigInt(innerBytes)
- if err1 == nil {
- v.Set(reflect.ValueOf(parsedInt))
- }
- err = err1
- return
- }
- switch val := v; val.Kind() {
- case reflect.Bool:
- parsedBool, err1 := parseBool(innerBytes)
- if err1 == nil {
- val.SetBool(parsedBool)
- }
- err = err1
- return
- case reflect.Int, reflect.Int32, reflect.Int64:
- if val.Type().Size() == 4 {
- parsedInt, err1 := parseInt32(innerBytes)
- if err1 == nil {
- val.SetInt(int64(parsedInt))
- }
- err = err1
- } else {
- parsedInt, err1 := parseInt64(innerBytes)
- if err1 == nil {
- val.SetInt(parsedInt)
- }
- err = err1
- }
- return
- // TODO(dfc) Add support for the remaining integer types
- case reflect.Struct:
- structType := fieldType
- if structType.NumField() > 0 &&
- structType.Field(0).Type == rawContentsType {
- bytes := bytes[initOffset:offset]
- val.Field(0).Set(reflect.ValueOf(RawContent(bytes)))
- }
- innerOffset := 0
- for i := 0; i < structType.NumField(); i++ {
- field := structType.Field(i)
- if i == 0 && field.Type == rawContentsType {
- continue
- }
- innerOffset, err = parseField(val.Field(i), innerBytes, innerOffset, parseFieldParameters(field.Tag.Get("asn1")))
- if err != nil {
- return
- }
- }
- // We allow extra bytes at the end of the SEQUENCE because
- // adding elements to the end has been used in X.509 as the
- // version numbers have increased.
- return
- case reflect.Slice:
- sliceType := fieldType
- if sliceType.Elem().Kind() == reflect.Uint8 {
- val.Set(reflect.MakeSlice(sliceType, len(innerBytes), len(innerBytes)))
- reflect.Copy(val, reflect.ValueOf(innerBytes))
- return
- }
- newSlice, err1 := parseSequenceOf(innerBytes, sliceType, sliceType.Elem())
- if err1 == nil {
- val.Set(newSlice)
- }
- err = err1
- return
- case reflect.String:
- var v string
- switch universalTag {
- case TagPrintableString:
- v, err = parsePrintableString(innerBytes)
- case TagIA5String:
- v, err = parseIA5String(innerBytes)
- case TagT61String:
- v, err = parseT61String(innerBytes)
- case TagUTF8String:
- v, err = parseUTF8String(innerBytes)
- case TagGeneralString:
- // GeneralString is specified in ISO-2022/ECMA-35,
- // A brief review suggests that it includes structures
- // that allow the encoding to change midstring and
- // such. We give up and pass it as an 8-bit string.
- v, err = parseT61String(innerBytes)
- default:
- err = SyntaxError{fmt.Sprintf("internal error: unknown string type %d", universalTag)}
- }
- if err == nil {
- val.SetString(v)
- }
- return
- }
- err = StructuralError{"unsupported: " + v.Type().String()}
- return
- }
- // canHaveDefaultValue reports whether k is a Kind that we will set a default
- // value for. (A signed integer, essentially.)
- func canHaveDefaultValue(k reflect.Kind) bool {
- switch k {
- case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
- return true
- }
- return false
- }
- // setDefaultValue is used to install a default value, from a tag string, into
- // a Value. It is successful if the field was optional, even if a default value
- // wasn't provided or it failed to install it into the Value.
- func setDefaultValue(v reflect.Value, params fieldParameters) (ok bool) {
- if !params.optional {
- return
- }
- ok = true
- if params.defaultValue == nil {
- return
- }
- if canHaveDefaultValue(v.Kind()) {
- v.SetInt(*params.defaultValue)
- }
- return
- }
- // Unmarshal parses the DER-encoded ASN.1 data structure b
- // and uses the reflect package to fill in an arbitrary value pointed at by val.
- // Because Unmarshal uses the reflect package, the structs
- // being written to must use upper case field names.
- //
- // An ASN.1 INTEGER can be written to an int, int32, int64,
- // or *big.Int (from the math/big package).
- // If the encoded value does not fit in the Go type,
- // Unmarshal returns a parse error.
- //
- // An ASN.1 BIT STRING can be written to a BitString.
- //
- // An ASN.1 OCTET STRING can be written to a []byte.
- //
- // An ASN.1 OBJECT IDENTIFIER can be written to an
- // ObjectIdentifier.
- //
- // An ASN.1 ENUMERATED can be written to an Enumerated.
- //
- // An ASN.1 UTCTIME or GENERALIZEDTIME can be written to a time.Time.
- //
- // An ASN.1 PrintableString or IA5String can be written to a string.
- //
- // Any of the above ASN.1 values can be written to an interface{}.
- // The value stored in the interface has the corresponding Go type.
- // For integers, that type is int64.
- //
- // An ASN.1 SEQUENCE OF x or SET OF x can be written
- // to a slice if an x can be written to the slice's element type.
- //
- // An ASN.1 SEQUENCE or SET can be written to a struct
- // if each of the elements in the sequence can be
- // written to the corresponding element in the struct.
- //
- // The following tags on struct fields have special meaning to Unmarshal:
- //
- // application specifies that a APPLICATION tag is used
- // default:x sets the default value for optional integer fields
- // explicit specifies that an additional, explicit tag wraps the implicit one
- // optional marks the field as ASN.1 OPTIONAL
- // set causes a SET, rather than a SEQUENCE type to be expected
- // tag:x specifies the ASN.1 tag number; implies ASN.1 CONTEXT SPECIFIC
- //
- // If the type of the first field of a structure is RawContent then the raw
- // ASN1 contents of the struct will be stored in it.
- //
- // If the type name of a slice element ends with "SET" then it's treated as if
- // the "set" tag was set on it. This can be used with nested slices where a
- // struct tag cannot be given.
- //
- // Other ASN.1 types are not supported; if it encounters them,
- // Unmarshal returns a parse error.
- func Unmarshal(b []byte, val interface{}) (rest []byte, err error) {
- return UnmarshalWithParams(b, val, "")
- }
- // UnmarshalWithParams allows field parameters to be specified for the
- // top-level element. The form of the params is the same as the field tags.
- func UnmarshalWithParams(b []byte, val interface{}, params string) (rest []byte, err error) {
- v := reflect.ValueOf(val).Elem()
- offset, err := parseField(v, b, 0, parseFieldParameters(params))
- if err != nil {
- return nil, err
- }
- return b[offset:], nil
- }
|