123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343 |
- // Copyright (c) 2016 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package edwards25519
- import (
- "encoding/binary"
- "errors"
- )
- // A Scalar is an integer modulo
- //
- // l = 2^252 + 27742317777372353535851937790883648493
- //
- // which is the prime order of the edwards25519 group.
- //
- // This type works similarly to math/big.Int, and all arguments and
- // receivers are allowed to alias.
- //
- // The zero value is a valid zero element.
- type Scalar struct {
- // s is the scalar in the Montgomery domain, in the format of the
- // fiat-crypto implementation.
- s fiatScalarMontgomeryDomainFieldElement
- }
- // The field implementation in scalar_fiat.go is generated by the fiat-crypto
- // project (https://github.com/mit-plv/fiat-crypto) at version v0.0.9 (23d2dbc)
- // from a formally verified model.
- //
- // fiat-crypto code comes under the following license.
- //
- // Copyright (c) 2015-2020 The fiat-crypto Authors. All rights reserved.
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are
- // met:
- //
- // 1. Redistributions of source code must retain the above copyright
- // notice, this list of conditions and the following disclaimer.
- //
- // THIS SOFTWARE IS PROVIDED BY the fiat-crypto authors "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
- // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Berkeley Software Design,
- // Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- //
- // NewScalar returns a new zero Scalar.
- func NewScalar() *Scalar {
- return &Scalar{}
- }
- // MultiplyAdd sets s = x * y + z mod l, and returns s. It is equivalent to
- // using Multiply and then Add.
- func (s *Scalar) MultiplyAdd(x, y, z *Scalar) *Scalar {
- // Make a copy of z in case it aliases s.
- zCopy := new(Scalar).Set(z)
- return s.Multiply(x, y).Add(s, zCopy)
- }
- // Add sets s = x + y mod l, and returns s.
- func (s *Scalar) Add(x, y *Scalar) *Scalar {
- // s = 1 * x + y mod l
- fiatScalarAdd(&s.s, &x.s, &y.s)
- return s
- }
- // Subtract sets s = x - y mod l, and returns s.
- func (s *Scalar) Subtract(x, y *Scalar) *Scalar {
- // s = -1 * y + x mod l
- fiatScalarSub(&s.s, &x.s, &y.s)
- return s
- }
- // Negate sets s = -x mod l, and returns s.
- func (s *Scalar) Negate(x *Scalar) *Scalar {
- // s = -1 * x + 0 mod l
- fiatScalarOpp(&s.s, &x.s)
- return s
- }
- // Multiply sets s = x * y mod l, and returns s.
- func (s *Scalar) Multiply(x, y *Scalar) *Scalar {
- // s = x * y + 0 mod l
- fiatScalarMul(&s.s, &x.s, &y.s)
- return s
- }
- // Set sets s = x, and returns s.
- func (s *Scalar) Set(x *Scalar) *Scalar {
- *s = *x
- return s
- }
- // SetUniformBytes sets s = x mod l, where x is a 64-byte little-endian integer.
- // If x is not of the right length, SetUniformBytes returns nil and an error,
- // and the receiver is unchanged.
- //
- // SetUniformBytes can be used to set s to a uniformly distributed value given
- // 64 uniformly distributed random bytes.
- func (s *Scalar) SetUniformBytes(x []byte) (*Scalar, error) {
- if len(x) != 64 {
- return nil, errors.New("edwards25519: invalid SetUniformBytes input length")
- }
- // We have a value x of 512 bits, but our fiatScalarFromBytes function
- // expects an input lower than l, which is a little over 252 bits.
- //
- // Instead of writing a reduction function that operates on wider inputs, we
- // can interpret x as the sum of three shorter values a, b, and c.
- //
- // x = a + b * 2^168 + c * 2^336 mod l
- //
- // We then precompute 2^168 and 2^336 modulo l, and perform the reduction
- // with two multiplications and two additions.
- s.setShortBytes(x[:21])
- t := new(Scalar).setShortBytes(x[21:42])
- s.Add(s, t.Multiply(t, scalarTwo168))
- t.setShortBytes(x[42:])
- s.Add(s, t.Multiply(t, scalarTwo336))
- return s, nil
- }
- // scalarTwo168 and scalarTwo336 are 2^168 and 2^336 modulo l, encoded as a
- // fiatScalarMontgomeryDomainFieldElement, which is a little-endian 4-limb value
- // in the 2^256 Montgomery domain.
- var scalarTwo168 = &Scalar{s: [4]uint64{0x5b8ab432eac74798, 0x38afddd6de59d5d7,
- 0xa2c131b399411b7c, 0x6329a7ed9ce5a30}}
- var scalarTwo336 = &Scalar{s: [4]uint64{0xbd3d108e2b35ecc5, 0x5c3a3718bdf9c90b,
- 0x63aa97a331b4f2ee, 0x3d217f5be65cb5c}}
- // setShortBytes sets s = x mod l, where x is a little-endian integer shorter
- // than 32 bytes.
- func (s *Scalar) setShortBytes(x []byte) *Scalar {
- if len(x) >= 32 {
- panic("edwards25519: internal error: setShortBytes called with a long string")
- }
- var buf [32]byte
- copy(buf[:], x)
- fiatScalarFromBytes((*[4]uint64)(&s.s), &buf)
- fiatScalarToMontgomery(&s.s, (*fiatScalarNonMontgomeryDomainFieldElement)(&s.s))
- return s
- }
- // SetCanonicalBytes sets s = x, where x is a 32-byte little-endian encoding of
- // s, and returns s. If x is not a canonical encoding of s, SetCanonicalBytes
- // returns nil and an error, and the receiver is unchanged.
- func (s *Scalar) SetCanonicalBytes(x []byte) (*Scalar, error) {
- if len(x) != 32 {
- return nil, errors.New("invalid scalar length")
- }
- if !isReduced(x) {
- return nil, errors.New("invalid scalar encoding")
- }
- fiatScalarFromBytes((*[4]uint64)(&s.s), (*[32]byte)(x))
- fiatScalarToMontgomery(&s.s, (*fiatScalarNonMontgomeryDomainFieldElement)(&s.s))
- return s, nil
- }
- // scalarMinusOneBytes is l - 1 in little endian.
- var scalarMinusOneBytes = [32]byte{236, 211, 245, 92, 26, 99, 18, 88, 214, 156, 247, 162, 222, 249, 222, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16}
- // isReduced returns whether the given scalar in 32-byte little endian encoded
- // form is reduced modulo l.
- func isReduced(s []byte) bool {
- if len(s) != 32 {
- return false
- }
- for i := len(s) - 1; i >= 0; i-- {
- switch {
- case s[i] > scalarMinusOneBytes[i]:
- return false
- case s[i] < scalarMinusOneBytes[i]:
- return true
- }
- }
- return true
- }
- // SetBytesWithClamping applies the buffer pruning described in RFC 8032,
- // Section 5.1.5 (also known as clamping) and sets s to the result. The input
- // must be 32 bytes, and it is not modified. If x is not of the right length,
- // SetBytesWithClamping returns nil and an error, and the receiver is unchanged.
- //
- // Note that since Scalar values are always reduced modulo the prime order of
- // the curve, the resulting value will not preserve any of the cofactor-clearing
- // properties that clamping is meant to provide. It will however work as
- // expected as long as it is applied to points on the prime order subgroup, like
- // in Ed25519. In fact, it is lost to history why RFC 8032 adopted the
- // irrelevant RFC 7748 clamping, but it is now required for compatibility.
- func (s *Scalar) SetBytesWithClamping(x []byte) (*Scalar, error) {
- // The description above omits the purpose of the high bits of the clamping
- // for brevity, but those are also lost to reductions, and are also
- // irrelevant to edwards25519 as they protect against a specific
- // implementation bug that was once observed in a generic Montgomery ladder.
- if len(x) != 32 {
- return nil, errors.New("edwards25519: invalid SetBytesWithClamping input length")
- }
- // We need to use the wide reduction from SetUniformBytes, since clamping
- // sets the 2^254 bit, making the value higher than the order.
- var wideBytes [64]byte
- copy(wideBytes[:], x[:])
- wideBytes[0] &= 248
- wideBytes[31] &= 63
- wideBytes[31] |= 64
- return s.SetUniformBytes(wideBytes[:])
- }
- // Bytes returns the canonical 32-byte little-endian encoding of s.
- func (s *Scalar) Bytes() []byte {
- // This function is outlined to make the allocations inline in the caller
- // rather than happen on the heap.
- var encoded [32]byte
- return s.bytes(&encoded)
- }
- func (s *Scalar) bytes(out *[32]byte) []byte {
- var ss fiatScalarNonMontgomeryDomainFieldElement
- fiatScalarFromMontgomery(&ss, &s.s)
- fiatScalarToBytes(out, (*[4]uint64)(&ss))
- return out[:]
- }
- // Equal returns 1 if s and t are equal, and 0 otherwise.
- func (s *Scalar) Equal(t *Scalar) int {
- var diff fiatScalarMontgomeryDomainFieldElement
- fiatScalarSub(&diff, &s.s, &t.s)
- var nonzero uint64
- fiatScalarNonzero(&nonzero, (*[4]uint64)(&diff))
- nonzero |= nonzero >> 32
- nonzero |= nonzero >> 16
- nonzero |= nonzero >> 8
- nonzero |= nonzero >> 4
- nonzero |= nonzero >> 2
- nonzero |= nonzero >> 1
- return int(^nonzero) & 1
- }
- // nonAdjacentForm computes a width-w non-adjacent form for this scalar.
- //
- // w must be between 2 and 8, or nonAdjacentForm will panic.
- func (s *Scalar) nonAdjacentForm(w uint) [256]int8 {
- // This implementation is adapted from the one
- // in curve25519-dalek and is documented there:
- // https://github.com/dalek-cryptography/curve25519-dalek/blob/f630041af28e9a405255f98a8a93adca18e4315b/src/scalar.rs#L800-L871
- b := s.Bytes()
- if b[31] > 127 {
- panic("scalar has high bit set illegally")
- }
- if w < 2 {
- panic("w must be at least 2 by the definition of NAF")
- } else if w > 8 {
- panic("NAF digits must fit in int8")
- }
- var naf [256]int8
- var digits [5]uint64
- for i := 0; i < 4; i++ {
- digits[i] = binary.LittleEndian.Uint64(b[i*8:])
- }
- width := uint64(1 << w)
- windowMask := uint64(width - 1)
- pos := uint(0)
- carry := uint64(0)
- for pos < 256 {
- indexU64 := pos / 64
- indexBit := pos % 64
- var bitBuf uint64
- if indexBit < 64-w {
- // This window's bits are contained in a single u64
- bitBuf = digits[indexU64] >> indexBit
- } else {
- // Combine the current 64 bits with bits from the next 64
- bitBuf = (digits[indexU64] >> indexBit) | (digits[1+indexU64] << (64 - indexBit))
- }
- // Add carry into the current window
- window := carry + (bitBuf & windowMask)
- if window&1 == 0 {
- // If the window value is even, preserve the carry and continue.
- // Why is the carry preserved?
- // If carry == 0 and window & 1 == 0,
- // then the next carry should be 0
- // If carry == 1 and window & 1 == 0,
- // then bit_buf & 1 == 1 so the next carry should be 1
- pos += 1
- continue
- }
- if window < width/2 {
- carry = 0
- naf[pos] = int8(window)
- } else {
- carry = 1
- naf[pos] = int8(window) - int8(width)
- }
- pos += w
- }
- return naf
- }
- func (s *Scalar) signedRadix16() [64]int8 {
- b := s.Bytes()
- if b[31] > 127 {
- panic("scalar has high bit set illegally")
- }
- var digits [64]int8
- // Compute unsigned radix-16 digits:
- for i := 0; i < 32; i++ {
- digits[2*i] = int8(b[i] & 15)
- digits[2*i+1] = int8((b[i] >> 4) & 15)
- }
- // Recenter coefficients:
- for i := 0; i < 63; i++ {
- carry := (digits[i] + 8) >> 4
- digits[i] -= carry << 4
- digits[i+1] += carry
- }
- return digits
- }
|